Реферат: Математичекие основы теории систем: анализ сигнального графа и синтез комбинационных схем
Согласно заданию на
курсовую работу выделено множество К контрольных точек (выходов). Оно
имеет вид:
К={x1, x4, y, x13}
Построим матрицы путей
для каждого из этих выходов.
Бинарная матрица P=||pij|| путей размера lxm, где l –
число путей, строится по следующему правилу:

Матрица путей выхода
для x1
|
w1
|
w2
|
w3
|
w4
|
w5
|
w6
|
w7
|
w8 |
u9 |
u10 |
u11 |
u12 |
u13 |
u14 |
u15 |
u16 |
u17 |
u18 |
u19 |
u20 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Матрица путей выхода для x4
|
w1 |
w2 |
w3 |
w4 |
w5 |
w6 |
w7 |
w8 |
u9 |
u10 |
u11 |
u12 |
u13 |
u14 |
u15 |
u16 |
u17 |
u18 |
u19 |
u20 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Матрица
путей выхода для y
|
w1 |
w2 |
w3 |
w4 |
w5 |
w6 |
w7 |
w8 |
u9 |
u10 |
u11 |
u12 |
u13 |
u14 |
u15 |
u16 |
u17 |
u18 |
u19 |
u20 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
3 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
4 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
6 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
Матрица
путей выхода для x13
|
w1 |
w2 |
w3 |
w4 |
w5 |
w6 |
w7 |
w8 |
u9 |
u10 |
u11 |
u12 |
u13 |
u14 |
u15 |
u16 |
u17 |
u18 |
u19 |
u20 |
x |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
x1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
x2 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
x3 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
x4 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
x5 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
Бинарная матрица контуров
C=||cij|| размера hxm, где h - число контуров, строится по
следующему правилу:

Предварительно
пронумеруем все контуры в произвольном порядке.
|
w1 |
w2 |
w3 |
w4 |
w5 |
w6 |
w7 |
w8 |
u9 |
u10 |
u11 |
u12 |
u13 |
u14 |
u15 |
u16 |
u17 |
u18 |
u19 |
u20 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
2 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
3 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
4 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
5 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
6 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
7 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
8 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1.7 Матрица касания контуров
Бинарная матрица контуров
Ck=||cij|| размера hxk, где k - число контуров, строится по
следующему правилу:

|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
5 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
6 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
7 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
8 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1. 8 Матрица
касания путей и контуров
Бинарная матрица контуров Cl=||cij|| размера lxk, где l - число путей для заданного выхода,
строится по следующему правилу:

Для
x1
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
Для
x4
Страницы: 1, 2, 3, 4
|