на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Автоматизированные измерительные и диагностические комплексы, системы


При использовании в устройствах ЭВМ одновременно со считыванием координат осуществляют обработку графических изображений по задан­ной программе.

Голографические ИС (ГИС). Основу датчиков составляют лазеры, представляющие собой когерентные источники света, когерентная опти­ка и оптоэлектронные преобразователи. Голографические измерительные системы отличаются высокой чув­ствительностью и повышенной точностью, что послужило основой широ­кого их применения в голографической интерферометрии. Голографическая интерферометрия обеспечивает бесконтактное измерение и одно­временное получение информации от множества точек наблюдаемой по­верхности с использованием меры измерения — длины световой волны, известной с высокой метрологической точностью.

Выполнение условий минимальной сложности ИС приводит к необ­ходимости последовательного многократного использования отдельных устройств измерительного тракта, а следовательно, к применению ИС параллельно-последовательного действия, которые носят название многоточечных ИС. Работа таких ИС основана на принципе квантования измеряе­мых непрерывных величин по времени.

Измерительные системы с общей образцовой величиной — мультипли­цированные развертывающие измерительные системы — содержат мно­жество параллельных каналов. Структура системы включает датчики и устройство сравнения (одно для каждого канала измерения), источник образцовой величины и одно или несколько устройств представления из­мерительной информации. Мультиплицированные развертывающие изме­рительные системы позволяют в течение цикла изменения образцовой величины (развертки) выполнять измерение значений, однородных по физической природе измеряемых величин, без применения коммутацион­ных элементов в канале измерения. Такие ИС имеют меньшее количество элементов по сравнению с ИС параллельного действия и могут обеспечить практически такое же быстродействие.

Статистические измерительные системы. Статистический анализ слу­чайных величин и процессов широко распространен во многих отраслях науки и техники. При статистическом анализе используются законы рас­пределения вероятностей и моментные характеристики, а также корреля­ционные спектральные функции.

Системы для измерения законов распределения вероятностей слу­чайных процессов - анализаторы вероятностей - могут быть одно- и много­канальными.

Одноканальные анализаторы вероятностей за цикл анализа реализации x(t) позволяют получить одно дискретное значение функции или плот­ности распределения исследуемого случайного процесса.

Многоканальные анализаторы позволяют получать законы распреде­ления амплитуд импульсов и интервалов времени между ними, амплитуд непрерывных временных и распределенных в пространстве случайных процессов и др. Многоканальные анализаторы широко используются в ядерной физике, биологии, геофизике, в химическом и металлургическом производствах. При этом используются аналоговые, цифровые и смешан­ные принципы построения анализаторов.

Существует два основных метода построения корреляционных изме­рительных систем. Первый из них связан с измерением коэффициентов корреляции и последующим восстановлением всей корреляционной функ­ции, второй - с измерением коэффициентов многочленов, аппроксими­рующих корреляционную функцию.

По каждому из этих методов система может действовать последова­тельно, параллельно, работать с аналоговыми или кодоимпульсными сиг­налами и в реальном времени.

Значительный класс статистических ИС - корреляционные экстремаль­ные ИС — основан на использовании особой точки — экстремума корре­ляционной функции при нулевом значении аргумента. Корреляционные экстремальные ИС широко применяются в навигации, радиолокации, металлообрабатывающей, химической промышленности и в других об­ластях для измерения параметров движения разнообразных объектов.

Выделение сигналов на фоне шумов, измерение параметров движе­ния, распознавание образов, идентификация, техническая и медицинская диагностика - это неполный перечень областей практического приме­нения методов и средств корреляционного анализа. В настоящее время подавляющий объем статистического анализа выполняется корреляцион­ными ИС, содержащими ЭВМ, либо отдельными устройствами со сред­ствами микропроцессорной техники.

Системы спектрального анализа предназначены для количественной оценки спектральных характеристик измеряемых величин. Существую­щие методы спектрального анализа основываются на применении частот­ных фильтров или на использовании ортогональных преобразований слу­чайного процесса и преобразований Фурье над известной корреляционной функцией.

Различают параллельный фильтровый анализ (полосовые избиратель­ные фильтры-резонаторы), последовательный фильтровый анализ (пере­страиваемые фильтры и гетеродинные анализаторы), последовательно-параллельный анализ.

Достоинства бесфильтровых анализаторов, основанных на определе­нии коэффициентов ряда Фурье, связаны с получением высокой разре­шающей способности, что позволяет их использовать для детального ана­лиза определенных участков спектра.

Системы для раздельного измерения взаимосвязанных величин при­меняются в следующих случаях:

·     исследуемое явление или объект характеризуется множеством неза­висимых друг от друга величин и при нали­чии селективных датчиков можно осуществить измерение всех значений

·     при независимых, но не селективных датчиках, сигналы на вы­ходе которых содержат составляющие от нескольких величин, встает задача выделения каждой измеряемой величины;

·     если элементы связаны между собой, то также необходимо осуществить раздельное измерение величин х.

Наиболее типичные задачи взаимно связанных измерений - измерение концентрации составляющих многокомпонентных жидких, газовых или твердых смесей или параметров компонентов сложных элек­тронных цепей без гальванического расчленения.

При раздельном измерении взаимосвязанных величин осуществляется воздействие на многокомпонентное соединение в целях селекции и измере­ния нужного компонента. Для механических и химических соединений существуют различные методики и средства такого раздельного измерения: масс-спектрометрия, хроматография, люминесцентный анализ и др.

Системы, измеряющие коэффициенты приближающих многочленов, называются аппроксимирующими (АИС) и предназначены для количест­венного описания величин, являющихся функциями времени, простран­ства или другого аргумента, а также их обобщающих параметров, опреде­ляемых видом приближающего многочлена.

Информационные операции в АИС выполняются последовательным, параллельным или смешанным способом. АИС реализуются с разомкнутой или замкнутой информационной обратной связью, в виде аналоговых или цифровых устройств.

При создании и использовании АИС выбирают тип приближающего многочлена и с учетом заданной погрешности аппроксимации определяют порядок функции.

Реализация задач АИС требует знания априорных сведений об исход­ной функции, учета метрологических требований к измерениям и др. При этом в качестве базисных функций могут быть выбраны ряды Фурье, разложения Фурье-Уолша, Фурье-Хаара, многочлены Чебышева, Лагранжа, Лежандра, Лагерра и др.

К основным областям применения АИС относятся измерение статис­тических характеристик случайных процессов и характеристик нелиней­ных объектов, сжатие радиотелеметрической информации и информации при анализе изображений, фильтрация-восстановление функций, генерация сигналов заданной формы.

Системы автоматического контроля (САК). Системы автоматичес­кого контроля предназначены для контроля технологических процессов, при этом характер поведения и параметры их известны. В этом случае объ­ект контроля рассматривается как детерминированный.

Эти системы осуществляют контроль соотношения между текущим (измеренным) состоянием объекта и установленной "нормой поведения" по известной математической модели объекта. По результатам обработки полученной информации выдается суждение о состоянии объектов конт­роля. Таким образом, задачей САК является отнесение объекта к одному из возможных качественных состояний, а не получение количественной информации об объекте, что характерно для ИС.

В САК благодаря переходу от измерения абсолютных величин к от­носительным (в процентах "нормального" значения) эффективность ра­боты значительно повышается. Оператор САК при таком способе коли­чественной оценки получает информацию в единицах, непосредственно характеризующих уровень опасности в поведении контролируемого объ­екта (процесса).

Как правило, САК имеют обратную связь, используемую для воздей­ствия на объект контроля. В них внешняя память имеет значительно мень­ший объем, чем объем памяти ИС, так как обработка и представление информации ведутся в реальном ритме контроля объекта.

Объем априорной информации об объекте контроля в отличие от ИС достаточен для составления алгоритма контроля и функционирова­ния самой САК, предусматривающего выполнение операций по обработ­ке информации. Алгоритм функционирования САК определяется пара­метрами объекта контроля. Например, существуют параметры, кратко­временное отклонение которых от "нормального" значения может по­влечь за собой возникновение аварийной ситуации; кратковременное от­клонение других параметров существенно не влияет на нормальный ход процесса и поведение объекта; третья группа параметров используется для расчета технико-экономических показателей (расход сырья, выход основ­ного продукта и т. д.).

По сравнению с ИС эксплуатационные параметры САК более высокие: длительность непрерывной работы, устойчивость и воздействие промыш­ленных помех, климатические и механические воздействия.

В настоящее время в основу классификации САК положена общая классификация ИИС с учетом специфики функций, выполняемых САК.

Системы автоматического контроля могут быть встроенные в объект контроля и внешние по отношению к нему. Первые преимущественно при­меняются в сложном радиоэлектронном оборудовании и входят в комп­лект такого оборудования. Вторые обычно более универсальны.

Системы технической диагностики (СТД). Они относятся к классу ИИС, так как здесь обязательно предполагается выполнение измеритель­ных преобразований, совокупность которых составляет базу для логичес­кой процедуры диагноза. Цель диагностики - определение класса состоя­ний, к которому принадлежит состояние обследуемого объекта.

Диагностику следует рассматривать как совокупность множества возможных состояний объекта, множества сигналов, несущих информа­цию о состоянии объекта, и алгоритмы их сопоставления.

Объектами технической диагностики являются технические системы. Элементы любого технического объекта обычно могут находиться в двух состояниях: работоспособном и неработоспособном. Поэтому задачей систем технической диагностики СТД является определение работоспособ­ности элемента и локализация неисправностей.

Основные этапы реализации СТД:

·     выделение состояний элементов объекта диагностики контролируемых величин, сбор необходимых статистических данных, оценка затрат труда на проверку;

·     построение математической модели объекта и разработка програм­мы проверки объекта;

·     построение структуры диагностической системы.

Элементы объекта диагноза, как правило, недоступны для непосред­ственного наблюдения, что вызывает необходимость проведения проце­дуры диагноза без разрушения объекта. В силу этого в СТД преимуществен­но применяются косвенные методы измерения и контроля.

В отличие от ИС и САК система технической диагностики имеет иную организацию элементов структуры и другой набор используемых во вход­ных цепях устройств и преобразователей информации. Входящий в состав структуры СТД набор средств обработки, анализа и представления информации может оказаться значительно более развитым, чем в ИС и САК. В СТД определение состояния объекта осуществляется программными средствами диагностики. При поиске применяется комбинационный или последовательный метод.

При комбинационном поиске выполняется заданное число проверок независимо от порядка их осуществления. Последовательный поиск свя­зан с анализом результатов каждой проверки и принятием решения на проведение последующей проверки. Системы технической диагностики подразделяют на специализированные и универсальные.

По целевому назначению различают диагностические и прогнозирую­щие СТД. Диагностические системы предназначены для установления точного диагноза, т. е. для обнаружения факта неисправности и локали­зации места неисправности. Прогнозирующие СТД по результатам про­верки в предыдущие моменты времени предсказывают поведение объекта в будущем.

По виду используемых сигналов СТД подразделяют на аналоговые и кодовые. По характеру диагностики или прогнозирования различают статистические и детерминированные СТД. При статистической оценке объекта решение выносится на основании ряда измерений или проверок сигналов, характеризующих объект. В детерминированной СТД пара­метры измерения реального объекта сравниваются с параметрами образцовой системы (в СТД должны храниться образцовые параметры прове­ряемых узлов). Системы технической диагностики подразделяют также на автоматические и полуавтоматические, а по воздействию на проверяе­мые объекты они могут быть пассивными и активными. В пассивной СТД результат диагностики представляется на световом табло либо в виде ре­гистрационного документа, т. е. результатом проверки является только сообщение о неисправности. При активной проверке СТД автоматически подключает резерв или осуществляет регулирование параметров отдельных элементов. Конструктивно СТД подразделяют на автономные и встроенные (или внешние и внутренние).

Системы распознавания образов (СРО). Предназначены для опреде­ления степени соответствия между исследуемым объектом и эталонным образом.

Для задач классификации биологических объектов и дактилоскопи­ческих снимков, опознавания радиосигналов и других создаются специаль­ные системы распознавания образов. Эти системы осуществляют  распознавание образов через количественное описание признаков, характеризую­щих данный объект исследования.

Процесс распознавания реализуется комбинацией устройств обработ­ки и сравнения обработанного изображения (описания образа) с эталон­ным образом, находящимся в устройстве памяти. Распознавание осущест­вляется по определенному, заранее выбранному, решающему правилу. При абсолютном описании образа изображение восстанавливается с задан­ной точностью, а относительное описание с набором значений отличитель­ных признаков (например, спектральных характеристик), не обеспечивая полное воспроизведение изображения.

Как пример СРО можно привести голографические распознающие системы (PC). В этих системах распознавание изображений осуществля­ется с относительно высокой скоростью (от 103 до 106 изображений в секунду благодаря параллельному анализу голограмм). Голографические PC нашли широкое применение при поиске химических элементов по спектрам их поглощения и в навигации при определении положения объ­екта по наземным ориентирам. В голографических PC удачно сочетаются высокая производительность оптических методов сбора и обработка инфор­мации с логическими и вычислительными возможностями ЭВМ.

Телеизмерительные информационные системы (ТИИС). Они отлича­ются от ранее рассмотренных в основном длиной канала связи. Канал связи является наиболее дорогой и наименее надежной частью этих сис­тем, поэтому для ТИИС резко возрастает значение таких вопросов, как надежность передачи информации.

Телеизмерительные ИИС могут быть одно- или многоканальными. Они предназначаются для измерения параметров сосредоточенных и рассредоточенных объектов. В зависимости от того, какой параметр несущего сигнала используется для передачи информации, можно выделить ТИИС:

·     интенсивности, в   которых  несущим параметром является значение тока или напряжения;

·     частотные (частотно-импульсные), в которых измеряемый параметр меняет частоту синусоидальных колебаний или частоту следования им­пульсов;

·     времяимпульсные, в которых несущим параметром является дли­тельность импульсов; к ним же относятся фазовые системы, в которых измеряемый параметр меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;

·     кодовые (кодоимпульсные), в которых измеряемая величина переда­ется какими-либо кодовыми комбинациями.

Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для информации. Этим системам присущи сравнительно большие погреш­ности, и они используются при передаче информации на незначительное расстояние.

Частотные ТИИС имеют большие возможности, поскольку в них прак­тически отсутствуют погрешности, обусловленные влиянием линий связи, и возрастает дальность передачи информации по сравнению с системами интенсивности.

Время-импульсные системы по длительности применяемых для пере­дачи импульсов подразделяют на две группы: системы с большим перио­дом (от 5 до 50 с) и системы с малым периодом (менее десятых долей секунды).

Длиннопериодные системы применяются в основном для измерения медленно меняющихся неэлектрических величин (уровень жидкости, давление газов и др.).

Короткопериодные системы имеют большое быстродействие. Для передачи коротких импульсов требуется большая полоса частот, пропус­каемых каналом связи. В силу этого такие системы с проводными лини­ями связи (ЛС) используются редко.

В последнее время получили широкое развитие адаптивные ТИИС, в которых алгоритмы работы учитывают изменение измеряемой величи­ны или окружающих условий (воздействий).

Основная цель применения адаптивных ТИИС состоит в исключении избыточности выдаваемой системой измерительной информации и в со­хранении или оптимизации метрологических характеристик (помехоус­тойчивости, быстродействия, погрешностей) при изменении условий из­мерительного эксперимента.

В адаптивных ТИИС используются алгоритмы адаптивной дискрети­зации и могут быть использованы алгоритмы адаптивной аппроксимации.

Обобщенная структура ИИС

Рассмотренные выше измерительные информационные системы пока­зывают, что почти для каждого типа ИИС используется цепочка из аппарат­ных модулей (измерительных, управляющих, интерфейсных, обрабатываю­щих). Таким образом, обобщенная структурная схема ИИС содержит:

·     множество различных первичных измерительных преобразователей, размещенных в определенных точках пространства стационарно или перемещающихся в пространстве по определенному закону;

·     множество измерительных преобразователей, которое может состо­ять из преобразователей аналоговых сигналов, коммутаторов аналоговых сигналов, аналоговых вычислительных устройств, аналоговых устройств памяти, устройств сравнения аналоговых сигналов, аналоговых каналов связи, аналоговых показывающих и регистрирующих измерительных приборов;

·     группу  аналого-цифровых преобразователей, а также аналоговых устройств допускового контроля;

·     множество цифровых устройств, содержащее формирователи им­пульсов, преобразователи кодов, коммутаторы, специализированные цифровые вычислительные устройства, устройство памяти, устройство сравнения кодов, каналы цифровой связи, универсальные программируе­мые вычислительные устройства - микропроцессоры, микроЭВМ и др.;

·     группу цифровых устройств вывода, отображения и регистрации, которая содержит формирователи кодоимпульсных сигналов, печатающие устройства записи на перфоленту и считывания с перфоленты, накопите­ли информации на магнитной ленте, на магнитных дисках и на гибких магнитных дисках, дисплеи, сигнализаторы, цифровые индикаторы;

·     множество цифроаналоговых преобразователей;

·     указанные функциональные блоки соединяются между собой через стандартные интерфейсы или устанавливаются жесткие связи;

·     интерфейсные устройства (ИФУ), содержащие системы шин, интер­фейсные узлы  и интерфейсные устройства аналоговых блоков, служа­щие главным образом для приема командных сигналов и передачи ин­формации о состоянии блоков. Например, через интерфейсные устрой­ства могут передаваться команды на изменение режима работы, на под­ключение заданной цепи с помощью коммутатора;

·     устройство управления, формирующее командную информацию, принимающее информацию от функциональных блоков и подающее ко­манды на исполнительные устройства для формирования воздействия на объект исследования (ОИ).

Однако не для всякой ИИС требуется присутствие всех блоков. Для каждой конкретной системы количество блоков, состав функций и связи между блоками устанавливаются услови­ями проектирования.

ИНТЕРФЕЙСЫ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

Общие понятия и определения

В настоящее время ИИС находят все более широкое применение в различных областях науки и техники. Они применяются в качестве компонентов сложных информационно-вычислительных комплексов и систем автоматизации. Особенно важную роль играют автоматические ИИС, ис­пользующие ЭВМ для программного управления работой системы.

Возросшие объемы проводимых измерений привели к широкому использованию программно-управляемых СИ. При этом возросшие требо­вания к характеристикам СИ оказали существенное влияние на методы сопряжения устройств, образующих ИИС.

Информационно-измерительные системы содержат ряд подсистем: измерительную, сбора, преобразования, предварительной обработки данных и подсистемы управления СИ в целом. Все подсистемы в ИИС соединены между собой в единую систему. Кроме того, ИИС в настоящее время проек­тируют на основе агрегатного (модульного) принципа, по которому уст­ройства, образующие систему, выполняются в виде отдельных, самостоя­тельных изделий (приборов, блоков). В составе ИИС эти устройства выпол­няют определенные операции и взаимодействуют друг с другом, переда­вая информационные и управляющие сигналы через систему сопряжения.

Для унифицированных систем сопряжения между устройствами, участ­вующими в обмене информации, стал общепринятым термин интерфейс (interface). Под интерфейсом (или сопряжением) понимают совокуп­ность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов ИИС (ГОСТ 15971—74). Устройства подсоединяются к системе сопряжения и объединяются в ИИС по опреде­ленным правилам, относящимся к физической реализации сопряжении. Конструктивное исполнение этих устройств, характеристики вырабатывае­мых и принимаемых блоками сигналов и последовательности выдавае­мых сигналов во времени позволяют упорядочить обмен информацией между отдельными функциональными блоками (ФБ).

Под интерфейсной системой понимают совокупность логических уст­ройств, объединенных унифицированным набором связей и предназначен­ных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаи­модействия функциональных модулей в соответствии с установленными нормами и правилами.

Возможны два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:

жесткая унификация и стандартизация входных и выходных пара­метров элементов системы;

использование функциональных блоков с адаптивными характерис­тиками по входам-выходам.

На практике часто сочетают оба подхода. Стандартизация интерфей­сов позволяет:

·     проектировать ИИС различных конфигураций;

·     значительно сократить число типов СИ и их устройств сопряжения;

·     ускорить и упростить разработку отдельных СИ и ИИС в целом;

·     упростить техническое обслуживание и модернизацию ИИС;

·     повысить надежность ИИС.

Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления СИ.

Основной структурной единицей ИИС является функциональный блок ФБ, который представляет собой один или несколько объединенных и взаимодействующих между собой измерительных преобразователей. Взаимодействие ФБ осуществляется через интерфейсные блоки ИБ по командам, организующим обмен данными. Команды управления форми­руются в управляющем блоке УБ и воздействуют на интерфейсные блоки через контроллер (К).

Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.