на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Курсовая работа: Системы документальной электросвязи


Вес кодовой комбинации 3 4 5 6 7 8 9
Число комбинаций 3 6 11 8 1 1 1

1.3 Определение доли необнаруженных ошибок

При ошибках кратности больше 3, возможна ситуация, когда полином будет точно таким же, как и результат сложения по mod2 каких-либо разрешенных кодовых комбинаций. Тогда принятая кодовая комбинация, содержащая такой полином ошибки, будет считаться разрешенной, что приведет к искажению информации. Составим таблицу, в которой рассчитывается доля необнаруженных ошибок для заданного циклического кода.

Табл. 2. Доля необнаруженных ошибок

Кратность ошибки i

Число вариантов ошибок Сi15

Число вариантов необнаруженных ошибок bi

Доля необнаруженных ошибок

bi / Сi15

1/2n-k

1 10 - -
2 45 - -
3 120 3

2,5 * 10-2

4 210 7

3,33 * 10-2

5 252 10

3,97 * 10-2

3,125 * 10-2

6 210 8

3,8 * 10-2

7 120 1

8,33 * 10-3

8 45 1

2,22 * 10-2

9 10 1 0,1
10 1

 


2. Определение эффективности для кода (10,5)

Исходные данные:

·  задан циклический код (10, 5);

·  Вероятность ошибки po = 7*10-4 (для канала с независимыми ошибками);

·  Вероятность ошибки po = 7*10-4 (для канала с группирующимися ошибками);

·  Минимальное кодовое расстояние dmin = 3;

·  Коэффициент группирования ошибок α = 0,6.

Эффективность определяется для режима обнаружения ошибок, и для двух типов каналов по следующим формулам:

·  Канал с независимыми ошибками:

·  Канал с группирующимися ошибками:


По результатам расчета можно сделать вывод, что эффективность больше на несколько порядков в канале с независимыми ошибками.

Система с РОС и непрерывной передачей информации

В этих системах передатчик передает непрерывную последовательность кодовых комбинаций, не ожидая получения сигналов подтверждения. Приемник стирает те кодовые комбинации, в которых РУ обнаруживает ошибки, а затем посылает сигнал переспроса. Кодовые комбинации выдаются получателю по мере их поступления. При реализации такой системы возникают трудности, вызванные конечным временем передачи и распространения сигналов.

Если передатчик будет повторять кодовые комбинации с запаздыванием на h комбинаций, то порядок комбинаций, получаемых ПИ(получатель информации), будет нарушен. Этого не должно быть, поэтому в приемнике есть специальное устройство и буферный накопитель (БН) значительной емкости, не менее ih, где i - число повторений. После обнаружения ошибки приемник стирает комбинацию с ошибкой и блокируется на h комбинаций, а передатчик по сигналу переспроса повторяет h последних кодовых комбинаций. Эти системы называются системами с непрерывной передачей и блокировкой или системами С РОС-нпбл. Данные системы еще называются системами с автоматическим запросом ошибок.


3. Определение оптимальной длинны блока циклического кода для системы РОС-НП

Исходные данные:

·  Вероятность необнаруженных ошибок Рно доп = 10-6;

·  количество накопителей h = 5.

Необходимо найти такой код, который при обеспечении требуемой вероятности необнаруженных ошибок Рно доп обеспечивал бы максимальную скорость передачи R.

,

где

 – скорость кода,  – скорость алгоритма.

Расчет скоростных параметров ведется по формулам:

Вероятность необнаруженных ошибок рассчитывается для канала с группирующимися ошибками по следующей формуле:

Все расчеты сведены в таблицу 3.


Табл. 3.

n k

dmin

Rk

Pно

Ra

R
15 11 3 0,733

8,33*10-5

0,996 0,73
7 5 0,433

4,24*10-6

0,996 0,465
5 7 0,333

9,27*10-7

0,996 0,333
31 26 3 0,838

5,57*10-5

0,995 0,834
21 5 0,677

1,42*10-6

0,995 0,674
16 7 0,580

3,87*10-8

0,995 0,513
63 57 3 0,904

3,7*10-5

0,993 0,898
51 5 0,810

4,71*10-7

0,993 0,804
47 7 0,746

2,57*10-8

0,993 0,741
127 120 3 0,945

2,45*10-5

0,991 0,936
113 5 0,890

1,56*10-7

0,991 0,882
108 7 0,850

4,26*10-9

0,991 0,843
255 247 3 0,968

1,62*10-5

0,988 0,957
239 5 0,937

5,15*10-8

0,988 0,926
233 7 0,913

7,03*10-10

0,988 0,903
511 502 3 0,982

1,07*10-5

0,984 0,967
493 5 0,965

1,7*10-8

0,984 0,949
486 7 0,951

1,16*10-10

0,984 0,936

По данным расчета определяется и строится график 1 для определения оптимальной длины блока. На графике 1 указаны скорости для кодов: (15,5), (31,16), (63,47), (127,108), (255,233), (511,486).

График 1


По результатам, полученным с помощью графика, можно сделать вывод, что оптимальная длина блока равна nоп =511 , а максимальная скорость.


4. Определение максимальной скорости передачи данных по каналу связи с заданными параметрами, при определенном способе модуляции и оптимальном приемнике

Исходные данные:

·  задан циклический код (10, 5);

·  Вероятность ошибки po = 10-6 (для канала с независимыми ошибками);

·  Вероятность необнаруженных ошибок p0 доп = 10-6

·  Вероятность необнаруженных ошибок p0 доп = 8,5*10-4 (для ЧМ)

·  Вероятность необнаруженных ошибок p0 доп = 7,5*10-4 (для ФМ)

·  Вероятность необнаруженных ошибок p0 доп = 10-4 (для АФМ)

·  Скорость передачи Bзад = 24000 Бод

Здесь, в качестве основного параметра характеризующего канал связи, используется вероятность ошибки p в зависимости от отношения средних мощностей сигнала и помех h, где последняя представляет собой аддитивный белый шум.

Зависимость p и h представляется в виде графика: по оси ординат в логарифмическом масштабе откладываются значения вероятности ошибки при приеме единичного элемента, а по оси абсцисс значения отношения сигнал/помеха h2 в децибелах (дБ).

 дБ

При построении такого графика для определенного вида модуляции используются формулы:


Здесь – функция Крампа, значения которой приведены в прил.2. [3].

Определим значения p при различных значениях h. Полученные расчеты сведены в таблицу 4.

Табл. 4.

h, дБ ЧМ ФМ АФМ
1 0,159 0,081 0,088
2 0,023 0,0025 0,073
3

1,35*10-3

1,1*10-5

0,064
4

3,15*10-5

5*10-8

0,055

Из полученных расчетов построим график 2.

2

График 2

Максимальная скорость Bmax определим с помощью графика 2 из следующего выражения:

где

Bmax – скорость при po = 10-6,

h1 – значение при po = 10-6,

h2 – значение при p0 доп (для различных видов модуляции)

Значения h1 и h2 для расчета сведем в таблицу 5.

Табл. 5.

Тип модуляции

h1

h2

ЧМ 22.6 9.6
ФМ 11.3 5.4
АФМ 17744 5598

Определим максимальную скорость:

Для ЧМ:

Для ФМ:

Для АФМ:

Вывод: максимальная скорость передачи будет при передаче с помощью амплитудной фазовой модуляции.


5. Определение эффективной скорости приема сигналов данных и оптимальной длины принимаемых блоков

С целью обеспечения заданной достоверности при передаче данных применяют обратные связи и помехоустойчивое кодирование, использование которых приводит к появлению избыточности и, следовательно, к уменьшению скорости передачи данных.

Эффективная скорость передачи Вэф будет зависеть от состояния канала связи, оптимальной длины передаваемых блоков и числа служебных разрядов. Блоки данных передаются кадрами, которые состоят из nсл1 байт служебных разрядов, r байт проверочных разрядов и k байт информационных разрядов. Обратная связь осуществляется с помощью управляющих кадров, которые состоят из nсл2 байт служебных разрядов.

Эффективная скорость определяется по формуле:

,

где

 – число байт в принимаемом блоке;

k – число информационных байт;

r – число проверочных байт; r = 16 бит;

p – вероятность ошибки единичного элемента.

Первая часть формулы указывает на уменьшение скорости за счет внесения служебных блоков, а вторая – уменьшение за счет переспросов.

Изменяя k от 15 до 500, и подставив эти значения в формулу для расчета эффективной скорости, получим график 3.


График 3

Из данного графика 3 видно, что оптимальная длина блока для АФМ равна:

nопт = k + r + nсл = 168 + 16 + 8 = 192 Бит = 24 Байт , при этом Bmax = 58500 Бод


6. Выбор помехоустойчивого кода

При приеме сообщений необходимо обеспечить вероятность ошибки не более 10-6, используют помехоустойчивые коды, исправляющая и обнаруживающая способность которых определяются их кодовым расстоянием d.

Определим вероятность необнаруженной ошибки Pно в принятом блоке по следующей формуле:

,

где  – число сочетаний из n по i;

t00 – число ошибок обнаруживаемых кодом;

Рассчитанное значение вероятности необнаруженных ошибок удовлетворяет неравенству.


7. Программная реализация кодирования и декодирования

Задан имитационный метод программной реализации.

Метод заключается в моделировании кодера и декодера циклического кода (10,5).

7.1 Кодирование

В основе кодирующего устройства лежит схема деления на порождающий многочлен g(x) = x5 + x4 + x3 + x + 1 с предварительным умножением на x5 . Число ячеек памяти в регистре равно числу избыточных элементов в кодовой комбинации (5) . Обратные связи подключены в соответствии с ненулевыми коэффициентами g(x) , следовательно, общее число обратных связей равно числу компонентов g(x) (или весу в двоичном представлении). Число сумматоров по модулю 2 равно числу знаков «+» в записи g(x) в виде многочлена. Вход схемы подключен после ячейки r4 для осуществления предварительного умножения кодируемого сообщения на x5 . Схема работает следующим образом. Информационные символы поступают на вход кодирующего устройства, начиная со старшей степени, и одновременно на выход схемы – в канал связи. В это время на схему И1 в цепи обратной связи поступают 5 тактовых импульсов и со входа информационные импульсы поступают через цепь обратной связи в разряды регистра r0, r1, r2, r3, r4. Как только все 5 информационных символов поступят в устройство, совокупность n-k - символов в разрядах регистра совпадет с остатком от деления  на g(x), т.е. разряды регистра содержат проверочные символы r(x) кодовой комбинации. По прошествии 5 тактов подача тактовых импульсов в схему И1 прекращается, т.е. линия обратной связи разрывается и 5 проверочных символов, сформированных в регистре, через схему И2, на которую начинают поступать тактовые импульсы от 6-го до 10-го такта, выводятся в канал связи сразу же за информационными элементами.

Таким образом, за 10 тактов с выхода схемы в канал поступает вся кодовая комбинация циклического (10,5) – кода.

7.2 Декодирование

Кодовая комбинация вводится в схему деления на g(x), и одновременно информационные элементы этой принятой комбинации записываются в накопитель информационных разрядов. После ввода последнего элемента кодовой комбинации в схему деления разряды регистра сдвига этой схемы будут содержать остаток от деления принятой комбинации на g(x).

В случае, когда остаток чисто нулевой, комбинация считается принятой верно, если же остаток не равен нулю, то фиксируется ошибка. С целью принятия решения о наличии или отсутствии ошибок в комбинации содержимое разрядов регистра после завершения деления вводится в схему ИЛИ.

Если ошибки отсутствуют (или не обнаружены), то на выходе схемы получаем сигнал “0”, по которому информация из накопителя информационных разрядов выдается потребителю информации. В том случае, когда на выходе схемы ИЛИ появляется сигнал “1”, а это произойдет, когда хотя бы в одном из разрядов регистра после деления появится “1”, т.е. полученный остаток не равен нулю, информационные разряды из накопителя потребителю не выдаются и фиксируется ошибка.

7.3 Текст программы

Программа написана на языке C++.

#include <iostream>

using namespace std;

int main()

{

int cod[10][7];

int i, j, k, x;

cout << endl << endl << " KYPCOBA9I PA6OTA no CD3C " << endl <<" CTYDEHTA rpynnbl CK-71 " << endl <<" KO3JIOBA DMUTPU9I" << endl << endl << endl;

for(i=0;i<10;i++)

for(j=0;j<7;j++)

{

cod[i][j]=0;

}

cout<<"Enter data (5 symbols, use 'space' between them)" << endl;

for (i=0; i<5; i++)

{

cin >> cod[i][0];

cod[i][6]=cod[i][0];

}

for(i=1;i<5;i++)

{

cod[0][5]=cod[0][0];

cod[0][1]=cod[0][0];

cod[0][2]=cod[0][0];

cod[0][4]=cod[0][0];

k=cod[i-1][5];

x=cod[i][0]^k;

cod[i][1]=x;

cod[i][2]=x^cod[i-1][1];

cod[i][3]=cod[i-1][2];

cod[i][4]=x^cod[i-1][3];

cod[i][5]=x^cod[i-1][4];

}

for(i=5;i<10;i++)

{

k=cod[i][5];

cod[i][1]=k;

cod[i][2]=k^cod[i-1][1];

cod[i][3]=cod[i-1][2];

cod[i][4]=k^cod[i-1][3];

cod[i][5]=k^cod[i-1][4];

cod[i][6]=cod[i-1][5];

}

cout<<"Encoded combination:";

for(i=0;i<10;i++)

{

cout<<" "<<cod[i][6];

}

cout << endl << endl << endl;

int dec[16][6], err[11];

for(i=0;i<16;i++)

for(j=0;j<6;j++)

{

dec[i][j]=0;

}

cout<<"Enter the polynom of errors (10 symbols, use 'space' between them)" << endl;

for (i=1; i<11; i++)

{

cin>>err[i];

}

for (i=1; i<11; i++)

{

dec[i][0] = cod[i-1][6] ^ err[i];

}

for(i=1;i<11;i++)

{

dec[i][1]=dec[i-1][5]^dec[i][0];

dec[i][2]=dec[i-1][5]^dec[i-1][1];

dec[i][3]=dec[i-1][2];

dec[i][4]=dec[i-1][5]^dec[i-1][3];

dec[i][5]=dec[i-1][5]^dec[i-1][4];

}

for(i=11;i<16;i++)

{

dec[i][1]=dec[i-1][5];

dec[i][2]=dec[i-1][5]^dec[i-1][1];

dec[i][3]=dec[i-1][2];

dec[i][4]=dec[i-1][5]^dec[i-1][3];

dec[i][5]=dec[i-1][5]^dec[i-1][4];

}

cout << endl << "Register contents :";

for(j=1; j<6; j++)

{

cout<<" "<<dec[10][j];

}

cout << endl << endl << endl;

int check = 0;

for (i=1; i<6; i++)

{

check += dec[10][i];

if (dec[10][i]!=0)

{

cout << "!Error detected!" << endl << endl;

break;

}

}

if (check == 0)

{

cout << "No errors detected" << endl << endl <<"Decoded combination:"<< endl <<endl;

for(i=0;i<5;i++)

{

cout<<" "<<cod[i][6];

}

cout << endl << endl << endl;

}

return 0;

}


Литература

1.  Передача дискретных сообщений, В.П. Шувалов, Н.В. Захарченко, Москва, 1990 г.

2.  Методические указания к лабораторному практикуму по курсу «Микропроцессорная техника в системах передачи данных», А.В. Буданов, Р.И. Виноградов, О. . Когновицкий, ЛЭИС, Ленинград, 1988 г.


Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.