на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Курсовая работа: Разработка локальной сети малой организации


В офисе на всех компьютерах будет установлена ОС Windows XP Professional Edition. Она по характеристикам наиболее лучше подходит для организации работы офиса. На сервере же будет установлена ОС Windows XP Server 2008.


4 Выбор топологии и стандарта ЛВС

 

4.1 Топологии сети

Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Базовые топологии

Все сети строятся на основе трех базовых топологий:

- шина;

- звезда;

- кольцо.

Шина

Рис.12. Топология «общая шина»

Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

Шина — пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором. Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Рис.13. Топология «звезда»

В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованны. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.

Кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Передача маркера

Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

Рис.14. Топология «кольцо»

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10 000 оборотов в секунду.

Таблица 4 – Характеристики топологий вычислительных сетей

Характеристики Топология

Звезда

Кольцо

Шина

Стоимость расширения Незначительная Средняя Средняя
Присоединение абонентов Пассивное Активное Пассивное
Защита от отказов Незначительная Незначительная Высокая
Размеры системы Любые Любые Ограниченны
Защищенность от прослушивания Хорошая Хорошая Незначительная
Стоимость подключения Незначительная Незначительная Высокая
Поведение системы при высоких нагрузках Хорошее Удовлетворительное Плохое
Возможность работы в реальном режиме времени Очень хорошая Хорошая Плохая
Разводка кабеля Хорошая Удовлетворительная Хорошая
Обслуживание Очень хорошее Среднее Среднее

Исходя из приведенных характеристик различных топологий и требований к проектируемой сети (высокая отказоустойчивость, хорошая разводка кабеля, легкость обслуживания, возможность независимого входа в сеть) выбираем топологию типа «общая шина».

4.2 Способы соединения

Разводка по разъему

Существует 2 основных способа разводки жил четырехпарного UTP/FTP/STP-кабеля по стандартному штекеру 8P8C, более известные в обиходе как RJ-45. Эти способы описаны в стандарте EIA/TIA-568 и выглядят так, как это показано на рисунке 15. Нумерация ножек в штекере при этом - от 1 до 8, причем первой считается та ножка, которая будет слева, если держать штекер перед собой направленным вверх ножками, защелкой от себя. Способы эти в обиходе называются, соответственно, "разводка по варианту А" и "разводка по варианту B".

Рис. 15. Стандарты EIA/TIA-568

Легко заметить, что, по сути, эти способы отличаются только тем, что зеленая и оранжевая пары в штекере меняются местами. Те жилы кабеля, что в варианте А, шли на ножки 1 и 2 - в варианте B оказываются на ножках 3 и 6, и наоборот. Разводка же кабеля по ножкам 4, 5, 7 и 8 (синяя и коричневая пары) одинакова в обоих вариантах.

Используемые жилы

При работе в сетях Ethernet в стандартах 10Base-T (обычные 10 мегабит) и 100Base-TX (обычные 100 мегабит) в проводе используются только две пары - зеленая и оранжевая, те самые, что при описанной выше стандартной разводке оканчиваются на ножках 1, 2, 3 и 6. Синяя и коричневая пары - не используются и могут вообще отсутствовать в кабеле.

При работе в сетях 1000Base-T (гигабитный Ethernet) в кабеле задействованы все четыре пары, так что все четыре и должны присутствовать в обязательном порядке.

Прямые и crossover-кабели

Виды разводки Ethernet-портов: MDI и MDI-X

Чтобы еще больше запутать ситуацию, введено два различных способа разводки портов в активном сетевом оборудовании. С одной стороны, стандартом предусмотрено, чтобы соединение оборудования сетевой инфраструктуры (коммутаторы, концентраторы) и клиентских сетевых карточек осуществлялось прямыми проводниками, без усложнения разводки кабельной системы. С другой стороны, если на одном конце пары находится передатчик - то на другом ее конце должен быть приемник и наоборот, так что где-то передающие и приемные ножки на разъеме необходимо поменять местами. Сделано это на уровне способа разводки Ethernet-гнезд на устройствах.

Гнезда на сетевых платах компьютеров, на разнообразных DSL-модемах, аппаратных маршрутизаторах и другом сетевом оборудовании, не образующем инфраструктуры ЛВС, обычно разводят так, чтобы передача велась по ножкам 1-2 гнезда, а приемник был на ножках 3 и 6. Такая разводка носит название MDI (от термина Media-Dependent Interface).

Гнезда на коммутаторах и концентраторах, с другой стороны, содержат "внутренний переворот" сигнальных линий. В них поменяны местами пары, ответственные за передачу и прием, так что коммутатор наоборот передает по ножкам 3 и 6 своего разъема, а принимает - на ножках 1-2. Такой вид внутренней разводки гнезда обозначается как MDI-X (MDI with internal crossover).

Соединение портов между собой

Для соединения между собой Ethernet-устройств с портами разных типов (с одной стороны MDI, а с другой MDI-X), например, для подключения компьютера к коммутатору или для соединения маршрутизатора с коммутатором - применяется прямой кабель. Для его изготовления достаточно выбрать любой из описанных в первом разделе стандартных вариантов разводки кабеля, и обжать оба его конца в соответствии с этим вариантом, строго одинаково.

Сложнее обстоит дело, если требуется соединять между собой оборудование с однотипными портами (MDI с MDI, или MDI-X с MDI-X), например, два коммутатора при расширении сети, или два компьютера "напрямую", или DSL-модем с компьютерной сетевой платой. Для такого соединения потребуется "перевитый" (crossover) кабель, в котором с одной из сторон меняются местами принимающие и передающие жилы. Для стандартов 10Base-T и 100Base-TX изготовление такого кабеля не связано ни с какими особыми хитростями - достаточно посмотреть на рисунок в начале статьи и применить разные стандартные варианты разводки на разных концах. Например, если один конец кабеля обжат в соответствии с TIA-586-A, а второй - по TIA-568-B, это и будет правильный crossover-кабель для стандартного Ethernet на 10 или 100 мегабит.

Чуть сложнее ситуация с гигабитным Ethernet. Поскольку в нем задействованы все четыре пары в кабеле - при изготовлении "перевитого" кабеля для работы на гигабите синюю и коричневую пары также необходимо будет поменять местами на одном из концов кабеля.

Соединение коммутаторов через порты UPLINK

Как уже было сказано, порты на концентраторах и коммутаторах (которые относятся к активному сетевому оборудованию) изготавливаются в разводке MDI-X (чтобы легко было подключать к ним компьютеры обычными "прямыми" проводами). Естественно, что в ситуации, когда сеть расширяется и необходимо непосредственно соединить два коммутатора между собой - Вы вынуждены изготавливать crossover-кабель, что не вполне удобно. Несомненно, удобнее было бы иметь однотипные кабели, фабричного изготовления, и не связываться с ручным трудом по переобжимке. Поэтому производители сетевого оборудования пытаются применять несколько способов для решения этой проблемы.

Порт UPLINK - одно из гнезд на коммутаторе может быть помечено как UPLINK. Такое гнездо обычно не является самостоятельным портом, а всего лишь дублирует один из уже имеющихся портов устройства в разводке MDI ("как у сетевушки"). Обычно дублируется первый или последний порт коммутатора, а на корпусе делается метка, указывающая, какой именно порт выведен на это гнездо. Единственное предназначение для него - чтобы позволить соединять коммутаторы между собой обычным "прямым" кабелем, не извращаясь с обжимкой crossover. Для соединения коммутаторов на одном из них "прямой" кабель включается в обычный порт, а на другом - в гнездо UPLINK.

Переключатель MDI/MDI-X - другой вариант реализации подобного UPLINK порта - кнопка переключения MDI/MDI-X возле одного из портов коммутатора. Нажатие на кнопку переводит этот порт в соотвествующую разводку, так что производителю можно сэкономить на "лишнем" гнезде. Способ соединения коммутаторов через этот порт аналогичен описанному выше: Вы включаете "прямой" кабель в обычный порт одного из коммутаторов, а на втором - включаете его в "переключаемый" порт, предварительно переключив его кнопкой в режим MDI.

Автоопределение разводки (Auto-MDI) - с недавних пор в современных коммутаторах (особенно в простых неуправляемых моделях, чаще всего применяемых в домашних сетях) начали делать автоопределение разводки кабеля. Обычно наличие такой функции сопровождается надписями на коробке в духе Auto-MDI. Порты таких коммутаторов сами подстраиваются под то, какой кабель в них воткнули - "перевитый" или "прямой", от компьютера или от другого коммутатора. Такой вариант, естественно, проще всего в эксплуатации, но поддерживают его пока далеко не все устройства.

Рассогласование пар

Выбор пар в кабеле действительно, особого значения не имеет, но вот их согласование - очень важно.

В кабеле UTP имеется четыре независимо свитых пары жил, проложенные производителем так, чтобы именно благодаря этой свивке взаимное влияние сигналов разных пар было минимальным, практически нулевым. Если нарушить группировку сигналов в пары, разнеся "парный" сигнал по жилам разных пар, то баланс в кабеле будет нарушен, и взаимные наводки между парами станут настолько велики, что кабель уже не сможет передавать информацию с приемлемым качеством. Такая ситуация называется "рассогласованием пар" (разнопаркой), split pairs. Кабель, в котором пары рассогласованы, будет, скорее всего, работать нормально на скорости в 10 мегабит, или на коротких (единицы метров) отрезках 100-мегабитной сети, но более длинные кабели при "произвольной" (пусть даже и совпадающей) разводке - работать уже не будут.

Потому очень важно, чтобы контакты штекера 1,2 и 3,6 принадлежали каждый к своей паре (цвет и бело-цвет). Например, если кто-то разводит кабель произвольно и выбрал для ножки 1, скажем, синюю жилу, то ножкой 2 может стать только бело-синяя. Аналогично, если выбрана, скажем, бело-коричневая жила для подключения к ножке 6, то ножку 3 обязательно нужно развести на коричневый провод.

Остальные контакты разъема не используются при работе на 10 и 100 мегабит, но при работе на гигабите или в некоторых малораспространенных стандартах наподобие 100Base-T4, прочие две пары (4,5 и 7,8) тоже должны соблюдаться.

В офисе будет использован способ разводки жил четырехпарного UTP/FTP/STP-кабеля по стандартному штекеру 8P8C – TIA – 568 – B, т.к. получаем полный дуплекс. Соединение: 100 мегабитное.

 

            5 Расчет пропускной способности ЛВС

Примем следующие исходные данные для расчета:

1.  протяженность сети S = 49м - максимальное расстояние между двумя станциями

2.  скорость модуляции В = 100 Мбит/с,

3.  число станций М = 14

4.  скорость распространения сигнала по кабелю связи V = 2,3×105 км/с,

5.  максимальное число ретрансляторов между двумя станциями np = 1,

6.  максимальная задержка одного ретранслятора в битах Lp = 15 бит.

7.  тип протокола, из которого устанавливается средняя длина информационной части кадра Lи = 1520 бит (Ethernet),

8.  средняя длина служебной части протокола кадра Lс = 320 бит,

9.  закон распределения длин служебной части кадра – детерминированный,

10.  закон распределения длин информационной части кадра - экспоненциальный),

11.  среднее значение интенсивности сообщений, поступающих суммарно от всех станций l = 560 1/с.

На основании указанных исходных данных произведем расчет времени задержки в сети и определим её пропускную способность.

1. Время распространения сигналов по кабелю между двумя наиболее удалёнными станциями:

tр = S/V = 49/(2,3 . 108) = 0,21 мкс

2. Максимальное время задержки сигнала в ретрансляторах

tрт = Np х (Lp/B) = 1 х 15/(108) = 1,5 х 10-7 c = 0,15 мкс

3. Полное время распространения сигнала по сети (максимальное)

t = tрт +tр = 0,21+ 0,15 = 0,36 мкс

4. Длительность информационной части кадра

tи = Lи/B = 1520/(100 х 106) = 152 . 10-7c =15,2 мкс

5. Длительность служебной части кадра

tс = Lc/B = 320/(100 х 106) = 32 х 10-7 c = 3,2 мкс

6. Суммарная длительность кадра

tср = tи + tс = 15,2+3,2 = 18,4 мкс

7. Коэффициент вариации времени передачи кадров сообщений

nср = sср/tср = = sи/tср = 15,2/18,4 = 0,826

8. Средняя интенсивность поступления сообщений от каждой из станций

lср = l/М = 560/14 = 40 с-1

9. Суммарный коэффициент загрузки в сети


R = l х tср = 560c-1 х 18,4 х 10-6 c = 0,01

10. Коэффициент дальнодействия с учётом времени задержки в ретрансляторах

a = t/tср = 0,36/18,4 = 0,02

11. Относительное время задержки доставки сообщений Wn

12. Время доставки сообщения

tn = W х tср = 1,0196 х 18,4 =18,8 мкс

13. Пропускная способность сети

14. Предельно допустимое значение суммарной интенсивности, при которой загрузка равна пропускной способности канала

15. Минимальное время задержки доставки (при R=0)


 

Расчёт показывает, что при малых загрузках сети время доставки tn, рассчитанное по п.12, незначительно превышает максимальное время доставки tn min. Таким образом, использование сетевого стандарта Ethernet оправдано и спроектированная сеть имеет запас по интенсивности передаваемых сообщений.


Заключение

локальная сеть иерархическая

В ходе выполнения данной курсовой работы спроектирована ЛВС стандарта Fast Ethernet 100 Мбит/с иерархического типа, состоящая из 14 рабочих станций и 1 сервера. Выполнены следующие этапы проектирования:

- описано назначение ЛВС и требования к ней, исходя из задач выбранной организации

- на основании сравнительного анализа подобрано оборудование для организации ЛВС

- выполнен обзор топологий и стандартов на ЛВС, выбрана оптимальная конфигурация сети

- освещены вопросы программного обеспечения для всех рабочих мест сети и выделенного сервера, выбора ОС и пакетов прикладных программ

- проведен расчет пропускной способности сети на скорости 100 Мбит/с

- выполнена примерная смета расходов исходя из текущих оптовых цен на комплектующие товары.

Спроектированная ЛВС, в связи с существующими реалиями рынка IT, будет подвержена моральному старению. Именно поэтому стоит вопрос о перспективах развития сети, модернизации её компонентов. Существующая организация сети позволяет в дальнейшем:

- Увеличить общее количество рабочих мест до 20 без изменения конфигурации сетевого оборудования

- Провести модернизацию сервера (наращивание объема памяти, добавление в систему еще одного жесткого диска SCSI), что скажется на объемах доступного дискового пространства всех рабочих станций и скорости работы.

- Настроить серверную ОС, чтобы использовать файловый сервер в качестве сервера приложений, т.е. в режиме, когда сервер отдает рабочим станциям часть вычислительной мощности. При этом скорость работы рабочих станций будет ограничена в принципе только пропускной способностью сети и возможностями сервера

- Если скорость 100 Мбит/с будет сильно затруднять работу в сети, возможна установка сетевого оборудования другого скоростного стандарта – Gigabit Ethernet (1000 Мбит/с).

Все эти мероприятия позволят значительно увеличить производительность рабочих станций сети без изменения их аппаратных конфигураций, за меньшее время и с удовлетворительными финансовыми затратами, чем если бы производилась модернизация всех рабочих станций. Это еще раз подтверждает преимущества иерархической сети с выделенным сервером.


Список использованных источников

1.  http://www.infotek-net.ru/: Прайс-лист компании «Инфотек» от 26.10.2010

2.   http://www.foroffice.ru/: Прайс-лист компании «ForOffice» от 28.10.2010

3.  Афанасьев Н.В., Акчурин Э.А., Лазарев В.А., Лихтциндер Б.Я. Локальные вычислительные сети: учебник для вузов связи.- М.-Радио и связь. 1996, 545 с.

4.  Нанс Б. Компьютерные сети. М.: «Бином» – QUE, 1995, 503 с.

5.  Протоколы информационно-вычислительных сетей: Справочник. под ред. И.А. Мизина и А.П. Кулешова -М.: Радио и Связь – 1990, 600 с.

6.  Симонович С. Internet: лаборатория мастера. М.: «АСТ-Пресс», 2001, 432 с.

7.  Щербо В.К., Киреичев В.М., Самойленко С.И. Стандарты по вычислительным локальным сетям. Справочник. -М.: Радио и Связь – 1990, 204 с.

Размещено на http://www.


Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.