на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Курсовая работа: Разработка математической модели теплообменника смешения


Откуда с учетом условия (1.9) получим линеаризованное уравнение статической характеристики в виде.

 (1.11)

Рис 1.4.Теплоабменник смешения как объект регулирования температуры.

При нарушении равновесия между притоком и стоком тепла в смеситель за малый промежуток времени  поступает некоторое дополнительное количество тепла . В результате изменяется температура жидкости в смесителе и температура выходящего потока на величину . Величина теплового разбаланса определяется зависимостью

Где — дополнительное количество тепла, внесенное в смеситель первым потоком при изменении его температуры на ;

— дополнительное количество тепла, внесенное в смеситель вторым потоком при изменении его расхода на ;

— дополнительное количество тепла, вынесенное

из смесителя выходящим потоком при изменении температуры жидкости в смесителе на величину .

Учитывая условие (1.9), выражение для  можно упростить:

 (1.12)

Изменение температуры жидкости в смесителе, вызванное разбалансом , равно

 (1.13)

где V0 — рабочий объем смесителя (V0 = const).

Подставим значение  из (1.11) в (1.12) и после очевидных преобразований, переходя к пределу при , получим уравнение, описывающее динамическую характеристику данного объекта:

 (1.14)

Выведенное ранее уравнение статической характеристики (1.13) может быть получено из (1.13) при выполнения условия равновесия, т.е когда Для приведения уравнения (1.14) к безразмерной форме введем следующее обозначение:


Подставляя данные из таблицы 1.1 получим следующее:

 (1.15)

 (1.16)

 (1.17)

После подстановки их в уравнение (1.14) и проведения необходимых преобразований получим в оканчательном виде.

 (1.18)

 (1.19)

 (1.20)

Преобразуем в область Лапласа


2. Получение передаточных функций по заданным динамическим каналам объекта

Передаточные функции характеризуют изменение сигнала при прохождении через систему.

Отношение Лапласовых изображений выходной и входной величин системы при нулевых начальных условиях называется передаточной функцией системы W(p)

 (2.1)

где xвх(p) и xвых(p) – изображение по Лапласу входной и выходной величин системы.

По передаточной функции системы W(p) и изображению ее входной величины можно найти изображение выходной величины

 (2.2)

При наличии одной входной и одной выходной величины система или звено имеют только один канал прохождения сигнала, а следовательно, и одну передаточную функцию. Если же система или звено имеют несколько каналов прохождения сигнала, что возможно при нескольких выходных и входных величинах, то прохождение сигнала в каждом канале характеризуется своей передаточной функцией[2].

Передаточные функции теплообменника могут быть найдены по его уравнению динамики, а также по структурной схеме (рис.2.1), составленной по равенствам (1.19).


Рисунок 2.1-Структурная схема теплообменника смешения.

Приведем без вывода передаточные функции теплообменника:

 (2.3)

по каналу

 (2.4)

по каналу  

 (2.5)


 

3. Получение математической модели объекта в виде переменных пространство состояний

Одной из распространенных форм математического описания линейных динамических систем являются уравнения следующего вида:

;            (3.1)

Это название связано с тем, что при uk = 0 достаточно задать начальное значение переменных xi, чтобы однозначно определить состояние системы xi(t), y1 для любого момента времени. Модель (3.1) содержит n дифференциальных уравнений 1-го порядка с k управляющими входными воздействиями, а также s алгебраических соотношений для связи выходных переменных системы y с переменными состояния x. Коэффициенты aij, bik, cli называют параметрами модели.

Уравнения (3.1) удобно представить в матричной форме

                     (3.2)

где X - вектор переменных состояния; U − вектор управляющих (входных) воздействий; Y - вектор выходов; A, B, C − матрицы параметров [2].

Модель (3.2), в сравнении с ранее рассмотренными моделями, формирует дополнительно n переменных внутреннего состояния системы, что увеличивает количество информации об объекте управления.


При этом начальные условия согласуют следующим образом:

                   (3.7)

Структурная схема объекта с учетом полученных передаточных функций:

 

Рисунок 3.1-Структурная схема объекта

Тогда вектор переменных состояния объекта в отклонениях от желаемых базовых значений примет вид:

На основе полученных дифференциальных уравнений запишем матрицы А, B и S.


4. Получение дискретной математической модели объекта

Термин “дискретный” еще не сложился. Каждая система управления, в которой присутствует хотя бы один элемент, который не подчиняется непрерывному характеру изменения сигнала, может быть отнесен к классу дискретных систем. Для этих систем характерным является исчезновения сигнала информации хотя бы на небольшом интервале времени. Если эти интервалы устремить к нулю, то можно рассматривать систему как непрерывную. Дискретные системы более общие. В производстве часто технологические процессы непрерывные [2].

Пусть имеется на входе в дискретный элемент какой-то непрерывный сигнал. Введем период квантования. Заменяем реальное время на кванты т=к*Т к=0,1,…,. Если Т 0 тогда имеем непрерывную модель. В этом случае можно зафиксировать амплитуды. Кроме квантования по времени можно квантовать и по вертикали (амплитуде). При таком виде квантования цифры заносятся в виде “0” и “1”. В случае объединения этих квантований они называются дискретными.

Выделим случай, когда входной сигнал x(t) является элементарной функцией 1(t). Реакцию системы на воздействие 1(t) можно компактно:

,                                                 (5.1)

где W(D) называется операторной передаточной функцией или оператором. Формально W(D) можно рассматривать как дробно-рациональную функцию от оператора:

.                                                              (5.2)


Воспользуемся преобразованием Лапласа, основываясь на утверждении

,                              (5.3)

если f(0) = 0. Аналогично можно записать:

 (5.4)

     (5.5)

для любого операторного многочлена степени k, если f(t) и ее производные при t < 0, равны нулю.

Применяя правило (5.5), получим

,                                      (5.6)

где

При этом предполагается, что равны нулю y(0), x(0) и начальные значения производных y(t), x(t) вплоть до (n – 1)-й и (m – 1)-й соответственно. Теперь a(p), b(p) - обычные функции комплексной переменной p. Поэтому операция деления на a(p) имеет обычный смысл

.                                                         (5.7)

Учитывая определения (5.7), приходим к основной формуле

.                                                        (5.8)


Для осуществления z-преобразования и выбора периода квантования воспользуемся пакетом Matlab:

clc, clear

%Передаточная функция по 1-ому динамическому каналу

W1=tf([1.25],[5 1]);

%Передаточная функция по 2-ому динамическому каналу

W2=tf([0.924],[5 1])

%Формирование передаточной объекта

Wo=series(W1,W2)

T=0.5;

WWo=c2d(Wo,T,'zoh')

figure(1);

step(Wo,WWo)

grid on

Определяем погрешность квантования:

Погрешность квантования не превышает заданную (7%), значит выполняем переход от непрерывной модели к дискретной с периодом квантования 0.5.

Передаточная функция в z-области:


Программа перехода от непрерывной модели(модели в пространстве состояния ) к дискретной в пакете MATLAB

clc, clear

% задаем матрицы параметров

A=[-0.2 0;0 -0.2]

B=[0;0.1848]

F=[0.25;0]

C=[1 1]

D=[0]

BB=[B F]

% переход в область переменных состояний

sistema1=ss(A,BB,C,D)

% переход в дискретную область

sistema2=c2d(sistema1,0.5)

Wz=tf(sistema2)

Модель в пространстве состояний.

 a = x1 x2 x1 0.9048 0 x2 0 0.9048 b = u1 u2 x1 0 0.119 x2 0.08793 0

c = x1 x2 y1 1 1 d = u1 u2 y1 0

Передаточная функция в z-области по каналам.

1.По первому динамическому каналу.

 


5. Получение переходных функций объекта по передаточным функциям каналов

Переходной характеристикой(переходной функцией) h(t) называется реакция системы на единичное ступенчатое входное воздействие u(t-τ)=1(t-τ) при нулевых начальных условиях. Единичная ступенчатая функция – это функция, которая обладает свойством

На рисунке 5.1 приведен пример переходной характеристики системы.

Рисунок 5.1-Пример переходной характеристики системы (τ – момент возникновения входного воздействия)

Для аналитического определения переходной функции следует решить дифференциальное уравнение при нулевых начальных условиях и единичном входном воздействии. При исследовании реального объекта переходную характеристику можно получить экспериментальным путем, подавая на его вход ступенчатое воздействие и фиксируя реакцию на выходе. Если входное воздействие представляет собой неединичную ступенчатую функцию u(t)=k1(t), то выходная величина будет равна y(t)=kh(t), т.е. представляет собой переходную характеристику с коэффициентом пропорциональности k[2].

Для построения переходной характеристики воспользуемся пакетом

Matlab:

clear,clc

W1=tf([1.25],[0.05 1]);

step(W)

Рисунок 5.1- Переходная характеристика объекта по первому динамическому каналу


 

6. Расчет коэффициентов передаточной функции по экспериментальной переходной функции методом площадей

Сравнение результатов расчета с истинной (аналитической) передаточной функцией объекта.

В основе метода площадей лежит предположение, что объект может быть описан линейным дифференциальным уравнением с постоянными коэффициентами, а его нормированная (приведенная к единице) переходная характеристика может быть аппроксимирована передаточной функцией вида:

                          (6.1)

Порядок числителя в выражении (6.1) всегда меньше или равен порядку знаменателя. Для нахождения явного вида выражения (6.1) для конкретного технологического объекта необходимо определить значения коэффициентов ai и bi, а также значения степеней полиномов n и m.

На первом этапе осуществляют нормирование переходной характеристики и входного воздействия:

;

                              (6.2)


Искомые коэффициенты W0(p) определяются из системы уравнений:

       (6.3)

где i=m+n и для всех i>n ai=0, а для всех i>m bi=0.

Входящие в эту систему уравнений коэффициенты S1, S2, …, Si связаны с кривой разгона интегральными соотношениями и вычисляются в соответствии с (4), где обозначено  - относительное время.Для расчета S1, S2 … Si используют численные методы (метод прямоугольников, метод трапеций и др.):[2]

 (6.4)

Переход от нормированной передаточной функции к обычной осуществляется путем ее умножения на коэффициент передачи

:         (6.5)

Программа расчет коэффициентов передаточной функции по экспериментальной переходной функции методом площадей в Matlab 6.5

clc,clear

T=0:1:30;

W=tf([1.25],[5 1])

y=step(W, T);

[T' y];

plot(T,y,'k');

grid

Таблица экспериментальных данных 6.1

t y
0 0
1 0.22659
2 0.4121
3 0.56399
4 0.68834
5 0.79015
6 0.87351
7 0.94175
8 0.99763
9 1.0434
10 1.0808
11 1.1115
12 1.1366
13 1.1572
14 1.174
15 1.1878
16 1.199
17 1.2083
18 1.2158
19 1.222
20 1.2271
21 1.2313
22 1.2347
23 1.2374
24 1.2397
25 1.2416
26 1.2431
27 1.2444
28 1.2454
29 1.2462
30 1.2469

 

Рис.6-1. График переходной экспериментальной характеристики.

clear, clc

dt=1

h=[0 0.22659 0.4121 0.56399 0.68834 0.79015 0.87351 0.94175 0.99763 1.0434 1.0808 1.1115 1.1366 1.1572 1.174 1.1878 1.199 1.2083 1.2158 1.222 1.2271 1.2313 1.2347 1.2374 1.2397 1.2416 1.2431 1.2444 1.2454 1.2462 1.2469]

h1=h/1.25

n=length(h)

i=1:n

t=(i-1)*dt

s1=dt*(sum(1-h1)-0.5*(1-h1(1)))

y=step(1.25,[s1 1], t);

plot(t,h,'ko',t,y);

grid

[yexp t]=step(1.25,[s1 1],t)

[s1]

s1 = 5.0054

Рис. 6-2. Совмещённый график расчётной и экспериментальной переходной характеристики.

В результате выполнения программы были получены следующие результаты:

Как видно из рисунка 6.2, экспериментальная и рассчитанная переходные характеристики практически не отличаются. Заключение

В данной курсовой работе была получена математическая модель теплообменника в виде дифференциальных уравнений. Также была получена передаточная функция объекта по заданному каналу (регулирование температуры подаваемой жидкости) и ее переходная характеристика.

Для идеального случая (возмущения отсутствуют) и при наличии возмущений по двум другим каналам была получена модель в переменных состояния. А также по заданному каналу дискретная модель. По экспериментальной передаточной функции с помощью метода площадей была получена расчетная передаточная функция. Сравнение показало, что экспериментальная и расчетная передаточные характеристики практически не отличаются.

Список использованной литературы

1  Полоцкий Л. М., Лапшенков Г.И. «Автоматизация химических производств». Теория, расчет и проектирование систем автоматизации - М:Химия, 1982. – 296 с.

2  Кузьмицкий, И.Ф., Кулаков Г.Т. Теория автоматического управления : учеб. пособие для студентов специальности «Автоматизация технологических процессов и производств». – Минск: БГТУ, 2006. – 486

3  Казаков А.В ,Кулаков М.В, Мелюшев Ю.К.Основы автоматики и автоматизации химических производств.Москва 1970.-374


Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.