на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Курсовая работа: Анализ методов определения минимального, максимального значения функции при наличии ограничений


f(x) = Q, M¢x(x, l)= Q.

Поскольку, очевидно, множители Лагранжа можно искать с точностью до постоянного множителя, то в общей ситуации этих уравнений хватает для отыскания x*.

Регулярные точки

Допустимая точка x задачи (3.1)–(3.2) называется регулярной, если векторы {f i(x)}ki=1линейно независимы. Оказывается, что если x* — регулярная точка минимума, то в векторе * можно считать *0 ненулевым, а поскольку множители Лагранжа определяются с точностью до множителя, можно считать, что *0 = 1. Чтобы сформулировать это утверждение более точно, введем следующие обозначения. Пусть   Rk, а функция Лагранжа в регулярном случае определяется равенством

L(x, l) = f0(x) + (l, f(x)) = f0(x) + li fi(x) (x Î Rm, l Î Rk).

Очевидно, L(x, l) = M(x, m), где m = (1, l).

Теорема (правило множителей Лагранжа в регулярном случае)

Пусть F  C1, а x* — регулярное локальное решение задачи (3.1)–(3.2). Тогда найдется ненулевой вектор *  Rk такой, что

L¢x(x*, l*)= Q.


Одно достаточное условие локального минимума

Говорят, что линейный оператор A положительно определен на подпространстве E, если (Ax, x) > 0 при всех x  E. Касательным подпространством к многообразию  в точке y называется множество Ty = {x  Rm: (f (y), x) = 0, i = 1, ..., k}. Касательной гиперплоскостью к многообразию  в точке y называется множество

W¢y = {x Î Rm: fi(y) + (f ¢(y), xy) = 0, i = 1, ..., k}.

Теорема (достаточное условие минимума)

Пусть F Î C2, а x* — регулярная стационарная точка функции Лагранжа, т. е., в частности, L¢(x*, *) =  при некотором ненулевом *  Rk. Тогда, если Lxx¢¢(x*, l*)положительно определен на Tx*, то точка x* является локальным решением задачи (3.1)–(3.2).

Методы решения задач с ограничениями типа равенств

Мы будем рассматривать ниже только регулярный случай. Один из естественных подходов к решению задач типа (3.1)–(3.2) основывается на необходимом условии экстремума — правиле множителей Лагранжа. Если бы можно было утверждать, что решению x* задачи (3.1)–(3.2) соответствует экстремум (x*, *) функции Лагранжа L, то к функции L можно было бы применять разработанные методы решения безусловных задач. Однако, так утверждать нельзя. В самом деле, если в точке x ограничения не выполняются, то за счет выбора  функцию L (поскольку по  она линейна) можно сделать как сколь угодно большой положительной, так и сколь угодно большой отрицательной. Поэтому естественно искать решение x* как первые m координат стационарной точки функции Лагранжа, например, методом Ньютона, мы приходим к методу Ньютона решения задач с ограничениями типа равенств — это просто метод Ньютона решения уравнения L(x, ) =  (в регулярном случае):


L¢(xn, ln) + L¢¢(xn, ln)(xn+1  xn, ln+1 - ln) = Q

в "координатной" форме

L¢x(xn,ln) + L¢¢xx(xn,ln)(xn+1 - xn) + L¢¢xl(xn,ln)(ln+1 - ln) = Q,

L¢l(xn,ln) + L¢¢xl(xn,ln)(xn+1 - xn) + L¢¢ll(xn,ln)(ln+1 - ln) = Q.

Остается подставить в эти уравнения явные выражения производных функции Лагранжа (учитывая, в частности, что L¢¢ll(xn,ln) = Q):

f ¢0(xn)+ [f ¢(xn)]*ln + (f ¢¢0(xn)+ lnif ¢¢i(xn)) (xn+1  xn) + [f ¢(xn)]*(ln+1  ln) = Q,

f(xn) + f ¢(xn)(xn+1  xn) = Q

и мы получаем m+k линейных уравнений для нахождения m+k неизвестных (xn+1, ln+1).

Описанный метод обладает всеми достоинствами и всеми недостатками метода Ньютона решения безусловных задач, в частности, он лишь локально сходится и требует большого объема вычислений. Поэтому попытаемся модифицировать градиентный метод, приспособив его к решению условной задачи (3.1)–(3.2). Поскольку, как сказано выше, точка (x*, *) - это седловая точка функции Лагранжа, то естественно пытаться с помощью градиентного метода минимизировать ее по x, одновременно максимизируя ее по :

xn+1 = xn  aL¢x(xn,ln), ln+1 = ln + aL¢l(xn,ln),

или, что то же xn+1 = xn  a(f ¢0(xn)+ [f ¢(xn)]*ln), ln+1 = ln + af(xn).

Можно доказать, что этот метод (его обычно называют методом Эрроу — Гурвица) при естественных ограничениях на гладкость и при условии положительной определенности оператора L¢¢xx(x*,l*) локально линейно сходится.

Описанные методы относятся к разряду двойственных методов, поскольку в итерационном процессе участвуют как прямые (x), так и двойственные (l) переменные.

Можно строить также прямые методы решения условных задач. Например, реализовать идею о том, что следующее приближение градиентного метода. Приближение xn+1 ищется как минимум функции x ® (f ¢0(xn),x  xn) + a||x  xn||2 на касательной гиперплоскости W¢xn. Здесь "штрафной член" ||x  xn||2 позволяет "минимизировать" линейную функцию x ® (f ¢0(xn),x  xn). Таким образом, мы приходим к прямому методу

xn+1 = argmin [(f ¢0(xn),x  xn) + a||x  xn||2], (3.4)

fi(xn) + (f ¢i(xn),x  xn) = 0, i = 1, ..., k. (3.5)

Ограничения (3.5) в этом методе — это, очевидно, линеаризации ограничений (3.2) в точке xn: минимум ищется на касательной гиперплоскости W¢xn.

Один из распространенных методов решения задач с ограничениями, с которым мы еще столкнемся — так называемый метод штрафов. Он позволяет сводить задачу с ограничениями к задаче без ограничений и суть его заключается в наказании за невыполнение ограничений. Именно, вместо минимизации функции f0 с ограничениями (3.2) минимизируется функция fs(x) = f0(x) + s||f(x)||2 без ограничений, в которой s — положительный параметр.

Теперь рассмотрим постановку задач с ограничениями типа неравенств gj(x) £ 0, j = 1, ..., l (3.6).


Множество допустимых точек

Рис. 3.2.

Определяются допустимые точки, локальный и глобальный, строгий и нестрогий минимумы. Так же мы будем использовать обозначения f и g для функций из Rm в Rk и Rl, соответственно, определяемые координатами fi и gj. Поэтому задачу (3.1)- (3.3), (3.6) можно записывать в виде

f(x) = Q, g(x) £ Q.

(напомним, что неравенство g(x) £ Q означает покоординатные неравенства).

f0(x) ® min, f(x) = Q, g(x) £ Q.

Через J(x) будет обозначаться множество индексов так называемых активных ограничений: J(x) = {j Î {1, ..., l}: gj(x) = 0} — это номера ограничений, которые в данной точке существенны.

Теорема (обобщенное правило множителей Лагранжа)

Пусть f0, f, g Î C1, а x* — локальное решение задачи f0(x) ® min, f(x) = Q, g(x) £ Q. Тогда найдутся такие l*0 Î R, l* Î Rk, m* Î Rl, не равные одновременно нулю, такие, что m*j ³ 0 при j Î J(x*) и

l*0 f ¢0(x*)+ l*i f ¢i(x*)+m*j g¢j(x*) = Q. (3.7)

Регулярный случай

Так же, как и в случае ограничений-равенств, в случае общей задачи нелинейной оптимизации, необходимый признак, информативен только в случае, если l*0¹ 0. В этой ситуации можно разделить (3.7) на l*0 и, следовательно, считать его равным единице. Это позволяет ввести функцию Лагранжа L: Rm×Rk×Rk ® R (в регулярном случае) равенством

(x, l, m) = f0(x) + (l, f(x)) + (m, g(x)).

Условие регулярности в случае общей задачи выглядит сложнее. Именно, допустимая точка x называется регулярной, если векторы f ¢1(x),..., f ¢k(x) линейно независимы и для некоторого ненулевого вектора

hÎRm (f ¢i(x),h) = 0 при i = 1, ..., k и (g¢j(x),h) < 0 при j Î J(x).

Геометрически, эти условия означают, что, во-первых, вектор h является касательным к многообразию, выделяемому ограничениями-равенствами (т. е. ортогонален всем градиентам f ¢i(x)), и, во-вторых, он образует с градиентами g¢j(x) активных ограничений (указывающими, очевидно, вовне множества W) тупой угол.


К понятию регулярной точки

Рис. 3.3.

Методы возможных направлений

Эти методы основываются на следующем простом понятии. Вектор (направление) z в допустимой точке x назовем возможным для задачи (3.1), (3.3), если малое перемещение в этом направлении уменьшает значение функции f0 и не выводит из множества допустимых точек, т. е. если при достаточно малых s точка xs = x + sz допустима и f(xs) < f(x). Если теперь на каждом шаге сдвигаться в возможном направлении на достаточно малое расстояние, то мы очевидно получим релаксационную последовательность, которая во многих случаях будет сходиться к решению задачи. Методы этого типа называются методами возможных направлений.

Методы проекции градиента

Проекцией PWx точки x Î Rm на множество W Ì Rm называется любая ближайшая к x точка множества W:

||x  PWx|| £ ||x  y|| при всех y Î W.


В тех случаях, когда проекцию точки на множество допустимых точек задачи (3.1), (3.3) найти достаточно легко (например, когда  — линейное подпространство, полупространство, шар, Rm и т. д.) используют метод проекции градиента:

xn+1 = PW(xn  anf ¢0(xn))

(см. рис. 3.4), являющийся прямым обобщением градиентного метода.

Метод проекции градиента

Рис. 3.4.

Можно доказать, например, что если функция f0 Î C1 сильно выпукла и f ¢ удовлетворяет условию Липшица, а множество W замкнуто и ограничено, то метод проекции градиента сходится со скоростью геометрической прогрессии.

Методы линеаризации

Суть этих методов, как следует из названия, состоит в линеаризации минимизируемой функции и ограничений в очередной точке xn строящейся релаксационной последовательности и объявлении следующим значением xn+1 решения получающейся линейной задачи, т. е. задачи


(f ¢0(xn),x  xn) ® min, (3.8)

gi(xn) + (g¢i(xn),x  xn) £ 0, i = 1, ..., l. (3.9)

Чтобы эта (линейная) задача была разрешима либо добавляют штраф в минимизируемую функцию, заменяя (3.8), например, задачей

(f ¢0(xn), x xn) + d||x  xn||2 ® min,

либо добавляя к (3.9) простые ограничения, которые делают множество допустимых точек этой задачи ограниченным, например, (линейные) ограничения

xi  xni an £ 0, xi + xni an £ 0 (i = 1, ..., m).

 

Методы штрафов

Основная идея здесь заключается в переходе от задачи (3.1), (3.3) к задаче безусловной оптимизации, в которой "наказывается" либо удаление от множества W допустимых точек (внешний штраф), либо приближение изнутри множества W к его границе (внутренний штраф). Различают методы внешних штрафов и внутренних штрафов. При методе внешних штрафов задачу решают тем или иным методом решения безусловных задач, увеличивая на каждом шаге штраф s. Как и в случае задач с ограничениями-равенствами, основным недостатком метода штрафов является рост числа обусловленности s. На несколько другой идее основываются так называемые методы внутренних штрафов или барьеров. Образно его можно описать так: у границы множества W возводятся барьеры, не позволяющие приближаться к его границе.

Ни один метод или класс методов не выделяется своей собственной высокой эффективностью при решении оптимизационных задач различных типов, т.е. универсальностью.

Симплекс - метод

Симплекс-метод – один из наиболее эффективных методов численного решения задач ЛП. Суть понятия "симплекс" заключается в следующем. Для тела в k-мерном пространстве симплексом называется множество, состоящее из k+1 вершин этого тела. Так, при k = 2, т.е. на плоскости, симплексом будут вершины треугольника; при k = 3 симплексом являются вершины четырехгранника, например тетраэдра, и т.д. Такое название методу дано по той причине, что в его основе лежит последовательный перебор вершин ОДЗП с целью определения координат той вершины, в которой функция цели имеет экстремальное значение.

Решение задачи с помощью симплекс-метода разбивается на два основных этапа. На первом этапе находят одно из решений, удовлетворяющее системе ограничений. Системы, в которых переменных больше, чем ограничений N > m, называются неопределенными. Они приводятся к определенным системам (N = m) путем приравнивания к нулю N-m каких-либо переменных.

При этом остается система m уравнений с m неизвестными, которая имеет решение, если определитель системы отличен от нуля. В симплекс-методе вводится понятие базисных переменных, или базиса. Базисом называется любой набор из m таких переменных, что определитель, составленный из коэффициентов при этих переменных в m-ограничениях, отличен от нуля. Остальные N-m переменных называются небазисными или свободными переменными.

Если принять, что все небазисные переменные равны нулю, и решать систему ограничений относительно базисных переменных, то получим базисное решение.

В системе из m уравнений с N неизвестными общее число базисных решений при N > m определяется числом сочетаний


Базисное решение, в котором все xi ≥ 0, i = [1,m], называется допустимым базисным решением. Таким образом, первый этап завершается нахождением допустимого базисного решения, хотя бы и неудачного.

На втором этапе производится последовательное улучшение найденного решения. При этом осуществляется переход от одного допустимого базисного решения к другому таким образом, чтобы значение целевой функции улучшилось. Процесс продолжается до тех пор, пока не будет достигнуто наименьшее (или наибольшее) значение функции цели. Геометрически это означает переход по ребрам из одной вершины многогранника допустимых значений в другую по направлению к той, в которой значение функции цели достигает экстремума. Симплекс-метод дает оптимальную процедуру перебора базисных решений и обеспечивает сходимость к экстремальной точке за конечное число шагов. Вычисления на втором этапе ведутся по следующей схеме:

·  базисные переменные и функция цели выражаются через небазисные переменные;

·  по определенному правилу выбирается та из небазисных переменных, изменение значения которой способно улучшить значение F(x) , и она вводится в базис;

·  определяется, какая из базисных переменных должна быть выведена из базиса, при этом новый набор базисных переменных, образующийся на каждом шаге, отличается от предыдущего только одной переменной;

·  базисные переменные и функция цели выражаются через новые небазисные переменные, и повторяются операции 2 и 3.

Если на определенном шаге окажется, что изменение значений любой из небазисных переменных не может улучшить F(x) , то последнее базисное решение оказывается оптимальным.

4. Нахождение экстремума функции при наличии ограничений

Метод симплексных процедур

Симплексом в пространстве n-измерений называют выпуклый многогранник, имеющий n+1 вершин, не лежащих в подпространстве размерности, меньшей n.

Решение задачи нахождения условного экстремума функции двух переменных может находиться либо на границах выпуклого многогранника, либо на его вершинах.

Согласно методу симплексных процедур экстремум функции обязательно лежит среди допустимых базисных решений. Это позволяет наметить путь к решению задачи, число которых конечно, а также найти все допустимые базисные решения и для каждого вычислить значение целевой функции, а затем выбрать из них min/max, хотя данный метод достаточно трудоемок.


Рис. 4.1. Блок-схема метода симплексных процедур.

 

Реализация метода в программе:


Рис. 4.2. Реализация метода симплексных процедур.

Рис. 4.3. График метода симплексных процедур.

Вывод: Минимальное значение функция принимает в точке А2 (2.3, 0.3). F(2.3, 0.3) = 7,003.


5. Синтез оптимальной по быстродействию системы с помощью принципа максимума Понтрягина

 

Синтез системы

Критерий управления, как отмечалось ранее, в этом случае

Мера ошибки в критерии H =1, а верхний предел T неизвестен. Начальная Х(0) = Х0 и конечная Х(T) = ХT точки закреплены.

Запишем функцию Гамильтона и условия трансверсальности:

 (T) и  (0)-произвольны.

Согласно принципу максимума Понтрягина, стратегия управления состоит в минимизации функции Гамильтона относительно u. Минимум Г будет тогда, когда  min по и или  min по и

Отсюда

 (5.2)

Таким образом, стратегия управления и характер u*(t) определены: оптимальное управление - это релейное управление, максимальное по величине, причем переключение управления производится тогда, когда функция ТВ пересекает ось времени t.

По изложенной методике определим оптимальное управление , которое произвольное начальное состояние (х10, x20) переводит в начало координат за минимальное время Т.

Представим объект  (5.1) в виде уравнения состояния (нормальная форма)

 (5.3)

В рассматриваемом примере матрица , вектор . Образуем матрицу .

Матрица G — невырожденная, поэтому система (3) будет нормальной. Характеристические числа матрицы A  = 0,  = -2, это числа вещественные, поэтому система (3) удовлетворяет условиям теоремы об n-интервалах. Оптимальное управление u*(t) является кусочно-постоянным и имеет не более двух интервалов постоянства.

Таким образом, управляющие последовательности в зависимости от начального состояния будут: {+ 1}, {-1},{+1,-1}, {-1, + 1}.

Обозначим u* = ∆=±1 и найдем общее решение системы при и* = ∆.

Обозначим  – множество начальных состояний, которые переводятся в начало координат управляющей последовательностью и* = {+1}, – множество начальных состояний, которые переводятся в начало координат управляющей последовательностью и* = {-1}. Эти множества описываются уравнениями

Если принять  то множество  запишется в виде

Закон управления

 (5.4)

Линия  представляет собой линию переключения.

Введем функцию , характеризующую расстояние от текущего положения фазовой точки (x1,x2) до линии переключения:


 (5.5)

Когда фазовая точка окажется на линии переключения, то правая часть уравнения (5) будет равна нулю ( = 0) и управляющее устройство должно произвести переключение знака управления на противоположный. Пока фазовая точка находится над линией переключения,  > 0 и управление должно быть отрицательным и (t) = -U. Когда фазовая точка находится под линией переключения,  < 0 и управление должно быть положительным и (t) = +U. Таким образом, в зависимости от знака должен выбираться и знак управления:

Все изложенное позволяет записать алгоритм оптимального по быстродействию регулятора для объекта (1):

=0, если , х2

По алгоритму решения составим структурную схему системы, реализующей закон управления

Рис. 5.1. Структурная схема системы


Моделирование объекта

По алгоритму решения

,

полученному ранее, составим структурные схемы для построения переходной и импульсной характеристик системы, реализующие закон управления для объекта , где k = 1, T1 = 10, T2 = 8.

Рис. 5.2. Структурная схема модели ОСАУ для переходной характеристики

Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.