на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: Создание низкоразмерной среды в арсениде галлия для устройств микро- и наноэлектроники


,                                                    (8)

.                                                    (9)

2.2 Формирование пористой матрицы в арсениде галлия

2.2.1 Электрохимия полупроводников

В отличие от элементных полупроводников электрохимия полупроводниковых соединений усложняется из-за наличия двух или более видов атомов, полярности связей, анизотропии кристалла, отклонений от стехиометрии и т.п. Так, например, кристаллы соединений (соединения алюминия, галлия, индия с фосфором, мышьяком и сурьмой) имеют кубическую решетку цинковой обманки (сфалерита). В них атом одного вида, например, элемента А, лежащий в плоскости (111), в одном направлении имеет три связи с тремя атомами элемента В, в противоположном направлении – одну связь с одним атомом элемента В. После резки и травления пластинки такого полупроводника, большие поверхности которой параллельны плоскости (111), на ней в основном остаются атомы, более прочно связанные тремя связями с объемом. В случае, например, арсенида галлия на стороне А такой пластины будут оставаться атомы галлия (плоскость (111)А, галлиевая сторона), а на противоположной стороне В пластины – атомы мышьяка (плоскость (111)В, мышьяковая сторона). Очевидно, что физические, физико-химические и, следовательно, электрохимические свойства этих противоположных поверхностей должны быть различными.

Экспериментальные факты позволяют представить следующий вариант механизма анодного растворения арсенида галлия ориентации (111)А в щёлочной среде, когда процесс контролируется электрохимической стадией:

≡Ga + OH– + e+ → =Ga–OH + OH– + e+ → –Ga=(OH)2 + OH– + e+ → Ga(OH)3.

Здесь –, = и ≡ – одинарная, двойная и тройная ковалентная связь, соответственно.

Стадия 1. Очень быстрое взаимодействие ОН-иона или в растворах, где рН < 7, с поверхностным атомом галлия, имеющим три объёмные ковалентные связи с тремя атомами мышьяка. При этом одна связь разрывается: один из её электронов уходит в объём полупроводника, что эквивалентно подводу пазона (дырки); другой электрон вместе с электроном ОН-иона образует полярную связь с одновалентным .

Cтадия 2. Аналогичная электрохимическая реакция, но протекающая с наибольшими затруднениями, так как в отличие от стадии 1, атом галлия уже частично окислен и экранирован ОН-группой. Поэтому отторжение внутреннего электрона одной из двух ковалентных связей в объём полупроводника, т. е. подвод пазона (дырки), отрицательным полем ОН-иона, который теперь не может подойти непосредственно к атому галлия, весьма затруднен. Эта стадия контролирует процесс анодного растворения арсенида галлия.

Стадия 3. Также электрохимическая реакция. Её протекание облегчено, во-первых, из-за наличия у атома галлия уже двух ОН-групп, создающих отрицательное поле, способствующее генерации пазонов в последней связи; во-вторых, оставшаяся одинокая ковалентная связь ослаблена из-за отклонений от конфигурации кристаллической решетки, и дополнительная адсорбция частиц раствора приводит к быстрому разрыву последней связи и переходу Ga (III) в раствор.

Стадия 4 – стадия растворения продуктов анодного окисления GaAs, (в приведенной схеме она не показана). Эта стадия может ограничивать процесс анодного растворения лишь при высокой плотности анодного тока, выше 1–30из-за оксидирования его поверхности: проявляются пассивационные явления, потенциал растёт до 50–100 В.

Атомы мышьяка, появившиеся на поверхности анода из GaAs ориентации (111)A, реагируют, как и атомы галлия, но с меньшими затруднениями, так как они имеют лишь одну ковалентную связь с объёмом полупроводника, остальные связи уже нарушены.

Анодное растворение арсенида галлия n-типа исследовалось многими авторами в кислых и щелочных растворах, без, и в присутствии окислителей, в водных и органических средах, на свету и в темноте, для образцов с разной ориентацией поверхности и разной концентрацией донорной примеси и т.п.

В кратком виде результаты многих исследований следующие.

1. В отличие от p-GaAs анодное поведение n-GaAs существенно зависит от его полупроводниковых свойств, от концентрации в нём донорной примеси.

2. У невырожденного GaAs n-типа () в темноте быстрое возрастание анодного перенапряжения начинается при плотности анодного тока . В отличие от n-Ge, но также как и у n-Si, скорость возрастания перенапряжения при анодной поляризации n-GaAs растёт с уменьшением концентрации донорной примеси и, наоборот, уменьшается с её ростом.

3. Рассматриваемое торможение анодного процесса не зависит от интенсивности перемешивания раствора или скорости вращения дискового анода из n-GaAs, лишь улучшается воспроизводимость и несколько возрастает ток для стороны (111)A. Это свидетельствует, что затруднения обусловлены процессами в твёрдой фазе анода.

4. Кристаллографическая ориентация поверхности анода из n-GaAs не влияет заметным образом на характер торможения и на вид анодных кривых, хотя анодный ток растворения стороны (111)B обычно больше, чем для стороны (111)A.

5. Напряжение пробоя, при котором начинается новый рост анодного тока, зависит от концентрации электронов (донорной примеси), а также от состава раствора, т. е. от его способности растворять продукты окисления арсенида галлия, которые пассивируют локальные места пробоя. Так, в 1 моль/л растворе  напряжение пробоя выше, чем в 1 моль/л растворе , и для n-GaAs ориентации (111)В его зависимость от концентрации носителей, больше , описывается эмпирической формулой:  [3].

2.2.2 Технологические условия формирования пористого арсенида галлия

Пористый арсенид галлия получали путём электрохимической обработки монокристаллического арсенида галлия, являющегося анодом. В качестве электролита использовали водный раствор плавиковой кислоты [4]. Для экспериментов были использованы образцы арсенида галлия n- и p-типов проводимости с полированной поверхностью, кристаллографической ориентацией (100) и концентрацией основных носителей заряда порядка . Перед получением пористого слоя образцы предварительно подвергали химическому полированию в растворе  в течение 1 минуты с последующей промывкой в дистиллированной воде.

При травлении образца n-типа необходима подсветка. В нашей работе применялась зеркальная лампа, мощностью порядка 20 .

В качестве электролита применялся 25 % раствор HF. Плотность тока лежала в пределах 70–80 . Время травления – 15 минут.

Само травление осуществлялось в электрохимической ячейке (рисунок 7).

1 – Платиновый катод; 2 – электролит; 3 – прокладка из вакуумированной резины; 4 – полупроводниковая пластина; 5 – омический контакт к полупроводнику; 6 – основание ячейки.

Рисунок 7 – Конструкция электрохимической ячейки


Глава 3. Методы исследования пористого арсенида галлия

3.1 Структурные свойства

3.1.1 Оптическая микроскопия

Для исследования структуры поверхности широко используется микроинтерферометр Линника МИИ-4, предназначенный для визуальной оценки, измерения и фотографирования высоты неровностей тонко обработанных поверхностей.

Микроинтерферометр применяется в лабораториях, научно-исследовательских и учебных институтов и промышленных предприятий, занимающихся вопросами чистоты обработки поверхностей.

Оптическая система микроинтерферометра показана на рисунке 8.

Рисунок 8 – Оптическая система микроинтерферометра

Нить лампы накаливания 1 проектируется коллектором 2 в плоскость апертурной диафрагмы 3. В фокальной плоскости проекционного объектива 4 помещена полевая диафрагма 5, которая изображается объективом 4 в бесконечности.

После проекционного объектива параллельный пучок лучей попадает на разделительную пластинку 6, на одной стороне которой нанесено светоотделительное покрытие. Разделительная пластинка делит падающий на нее пучок света пополам: одну половину она отражает, другую – пропускает.

Пучок лучей, отраженный от пластинки 6, собирается в фокусе объектива 7 на исследуемой поверхности, после отражения от которой снова проходит через объектив 7, пластинку 6 и собирается в фокусе объектива 8, где наблюдается изображение исследуемой поверхности. Зеркало 9 направляет пучки лучей в визуальный тубус.

Второй пучок лучей, пройдя через разделительную пластинку 6, падает на компенсатор 10, после чего собирается в фокусе объектива 11 на эталонном зеркале 12, отразившись от которого, снова проходит через объектив 11, компенсатор 10 и падает на разделительную пластинку 6. При этом часть лучей проходит через пластинку 6 и не участвует в образовании изображения, а другая часть лучей отражается от пластинки 6 и интерферирует с лучами первой ветви интерферометра, образуя резкое изображение интерференционных полос в бесконечности. Это изображение объективом 8 переносится в фокальную плоскость окуляра 13.

Таким образом, изображения интерференционных полос и исследуемой поверхности получаются в фокальной плоскости окуляра и налагаются друг на друга.

Для работы с монохроматическим светом, т.е. светом определенной длины волны, прибор снабжен двумя интерференционными светофильтрами 14, которые включаются и выключаются из хода лучей перемещением направляющей. Светофильтры отличаются друг от друга своими характеристиками.

На рисунке 9 представлены фотографии сколов пластин арсенида галлия с пористым слоем. Ввиду низкой разрешающей способности оптического микроскопа определить какие-либо характеристики пористых слоёв невозможно, но можно подтвердить наличие самого пористого слоя.

Рисунок 9 – Изображения пористых слоёв, полученные при помощи оптического микроскопа

3.1.2 Электронная микроскопия

В растровом электронном микроскопе (РЭМ) применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рисунок 10).

Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение принципиально может составлять величину от 10 до 10 млн.

1 – источник электронов; 2 – ускоряющая система; 3 – магнитная линза; 4 – отклоняющие катушки; 5 – образец; 6 – детектор отраженных электронов; 7 – кольцевой детектор; 8 – анализатор.

Рисунок 10 – Растровый электронный микроскоп

Электроны, идущие от источника, ускоряются и фокусируются в узкий пучок на образце. Этот пучок перемещается по образцу отклоняющими катушками с током. Детекторы, расположенные выше образца, регистрируют рентгеновское излучение, вторичные и отраженные электроны. Электроны, прошедшие сквозь тонкий образец, регистрируются кольцевым детектором или, пройдя через энергетический анализатор, используются для формирования изображения на экране.

Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать «толстые» образцы [6].

Посредством сканирующего электронного микроскопа были получены снимки поверхности образца n-типа (рисунок 11).

Рисунок 11 – Электронная микроскопия образца пористого арсенида галлия n-типа проводимости

3.2 Электрические свойства

Поляризационные процессы смещения любых зарядов в веществе, протекая во времени до момента установления и получения равновесного состояния, обусловливают появление поляризационных токов, или токов смещения в диэлектриках. Токи смещения упруго связанных зарядов при электронной и ионной поляризациях настолько кратковременны, что их обычно не удается зафиксировать прибором [1].

Токи смещения, при различных видах замедленной поляризации, наблюдаемые у многих технических диэлектриков, называют абсорбционными токами (или токами абсорбции) .

При постоянном напряжении абсорбционные токи, меняя свое направление, проходят только в периоды включения и выключения напряжения. При переменном напряжении они имеют место в течение всего времени нахождения материала в электрическом поле.

Наличие в технических диэлектриках небольшого числа свободных зарядов, а также инжекция их из электродов приводят к возникновению небольших токов сквозной электропроводности (или сквозных токов).

Таким образом, полная плотность тока в диэлектрике, называемого током утечки, представляет собой сумму плотностей токов абсорбционного и сквозного:

 (10)

Проводимость диэлектрика при достоянном напряжении определяется по сквозному току, который сопровождается выделением и нейтрализацией зарядов на электродах. При переменном напряжении активная проводимость определяется не только сквозным током, но и активными составляющими поляризационных токов.

В большинстве случаев электропроводность диэлектриков ионная, реже – электронная.

Сопротивление диэлектрика, заключенного между двумя электродами, при постоянном напряжении, т. е. сопротивление изоляции , можно вычислить по формуле:

, (11)

где  – приложенное напряжение;

 – наблюдаемый ток утечки;

 – сумма токов, вызванных замедленными механизмами поляризации, ток абсорбции.

У твердых изоляционных материалов различают объемную и поверхностную электропроводности.

Для сравнительной оценки объемной и поверхностной электропроводности разных материалов используют также удельное объемное  и удельное поверхностное  сопротивления.

Удельное объемное сопротивление  численно равно сопротивлению куба с ребром в 1 м, мысленно выделенного из исследуемого материала, если ток проходит через две противоположные грани этого куба;  выражают в Омм; 1 Омм = 100 Омсм.

В случае плоского образца материала при однородном поле удельное объемное сопротивление рассчитывают по формуле:

, (12)

где – объемное сопротивление, Ом;

 – площадь электрода, м;

 – толщина образца, м.

Удельное поверхностное сопротивление  численно равно сопротивлению квадрата (любых размеров), мысленно выделенного на поверхности материала, если ток проходит через две противоположные стороны этого квадрата ( выражают в Омах):

, (13)

где  - поверхностное сопротивление образца материала между параллельно поставленными электродами шириной  отстоящими друг от друга на расстоянии  (рисунок 12).


Рисунок 12 – Эскиз размещения электродов (1) на поверхности образца из электроизоляционного материала (2) при измерении

арсенид галлий заряд матрица

По удельному объемному сопротивлению можно определить удельную объемную проводимость и соответственно удельную поверхностную проводимость .

Полная проводимость твердого диэлектрика, соответствующая его сопротивлению, складывается из объемной и поверхностной проводимостей.

Так как в данной работе использовались плоские образцы, то для расчета удельного объемного сопротивления подходит формула (12). Исходные данные: =215000 Ом; =0,0001 м; =0,00035 м., тогда

                            (14)

В процессе анодирования снималась вольт-амперная характеристика, по которой впоследствии была определена динамика изменения сопротивления цепи (рисунки 13, 14).


Рисунок 13 – Изменение сопротивления цепи в процессе анодирования образца n-типа проводимости

Рисунок 14 – Изменение сопротивления цепи в процессе анодирования образца p-типа проводимости

Сразу после травления образцы промывались дистиллированной водой, извлекались из ячейки и высушивались на воздухе. При визуальном рассмотрении можно было отметить потемнение поверхности образцов после анодирования.


3.3 Оптические свойства

Исследована спектральная зависимость фотоответа образцов пористого арсенида галлия.

Схема экспериментальной установки (рисунок 14) содержала осветитель с оптической системой, сигнал с которого поступал на образец, связанный с узкополосным усилителем. Фотоответ в мкВ фиксировался на шкале усилителя в момент совпадения частот вращения механического модулятора и полосы пропускания усилителя, настроенного на заданную длину волны.

1 – осветитель с оптической системой; 2 – исследуемый образец; 3 – узкополосный усилитель.

Рисунок 14 – Схема установки для исследования спектральной зависимости фотоответа

Рисунок 15 – Зависимость фотоответа от длины волны падающего света (площадь воздействия света )

Как видно из приведённого графика, приближаясь к длине волны красного цвета, величина фотоответа замедляет свой рост, что позволяет сделать предположение о том, что максимум фотолюминесценции приходится на длину волны порядка 650 нм.


ЗАКЛЮЧЕНИЕ

1) Методами скола и селективного травления определена кристаллографическая ориентация фрагментов подложек арсенида галлия; методом термо-ЭДС определён их тип проводимости; четырёхзондовым методом определено удельное поверхностное сопротивление и рассчитана концентрация носителей, составившая величину порядка .

2) Проведено анодирование подложек арсенида галлия n- и p-типов проводимости с ориентацией (100); при помощи сканирующего электронного микроскопа установлено, что формируется низкоразмерная среда с размерами элементов до 500 нм.

3) Измерено удельное сопротивление полученных слоёв, которое составило величину порядка . Такое высокое сопротивление объясняется наличием пор в полученном материале.

4) Исследование фотоэлектрических свойств образцов n- и p-типа показывает, что максимум фотоактивности образцов соответствует длине волны красного света 650–680 нм, – 1,7 эВ. В образце арсенида галлия n-типа проводимости величина фотоответа выше, чем в образце p-типа проводимости примерно на 15–20 %, что совпадает с литературными данными.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Ковтонюк Н.Ф. Измерение параметров полупроводниковых материалов [Текст]: учеб. / Н.Ф. Ковтонюк, Ю.А. Концевой. – М.: Металлургия, 1970. – 272 с.

2. Батавин В.В. Измерение параметров полупроводниковых материалов и структур [Текст]: учеб. / В.В. Батавин, Ю.А. Концевой, Ю.В. Федорович. М.: Радио и связь, 1985. – 264 с.

3. Мямлин В.А. Электрохимия полупроводников [Текст]: учеб. / В.А Мямлин, Ю.В. Плесков. М.: Наука, 1965. – 376 с.

4. Гуревич Ю.Я. Фотоэлектрохимия полупроводников [Текст]: учеб. / Ю.Я. Гуревич, Ю.В. Плесков. М.: Наука, 1983. – 281 с.

5. Шелованова, Г.Н. Материаловедение и материалы электронных средств [Текст]: метод. указания по лаб. раб. №1-10 / Г.Н. Шелованова. – Красноярск: ИПЦ КГТУ, 2006. – 64 с.

6. http://www.krugosvet.ru/ Онлайн энциклопедия Кругосвет. Электронный микроскоп.

7. Николаев, К.П. Особенности получения и области применения пористого кремния в электронной технике [Текст] / Николаев К.П., Немировский Л.Н // Обзоры по электронной технике – 1989. – №9. – С. 59.

8. Properties of Porous Silicon / Ed. L. Canham. DERA: Malvern, UK, 1997. 405 p

9. Зимин, С.П. Пористый кремний – материал с новыми свойствами [Текст] / С.П. Зимин. // Соросовский образовательный журнал – 2004. – №1. – С. 48-53.

10. Образцов, А.Н. Поглощеине света и фотолюминесценция пористого кремния [Текст] / А.Н. Образцов, В.А. Караванский, Х. Окуси, Х. Ватанабе. // Физика и техника полупроводников – 1998. – №8. – С. 79-83   

11. Зимин, С.П. Классификация электрических свойств пористого кремния [Текст] / С.П. Зимин. // Физика и техника полупроводников – 2000. – №3. – С. 31-34.

12. Белогорохов, А.И. Оптические свойства пористого наноразмерного GaAs [Текст] / А.И. Белогорохов, С.А. Гаврилов, И.А. Белогорохов, А.А. Тихомиров. // Физика и техника полупроводников. – 2005. – №39. – С. 25-29.

13. Аверкиев, Н.С. Оптические и электрические свойства пористого арсенида галлия [Текст] / Н.С. Аверкиев, Л.П. Казакова, Э.А. Лебедев, Ю.В. Рудь, А.Н. Смирнов, Н.Н. Смирнова. // Физика и техника полупроводников – 2000. – №34. – С. 58-65.

14. Горячев, Д.Н. Фотолюминесценция пористого арсенида галлия [Текст] / Д.Н. Горячев, О.М. Сресели. // Физика и техника полупроводников – 1997. – №31. – С. 47-52.

15. Бузынин, Ю.И. Монокристаллические слои GaAs, AlGaAs и InGaAs, полученные методом газофазной эпитаксии из металлоорганических соединений на подложках пористого арсенида галлия [Текст] / Ю.И. Бузынин, С.А. Гусев, В.М. Данильцев, М.Н. Дроздов, Ю.Н. Дроздов, А.В. Мурель, О.И. Хрыкин, В.И. Шашкин. // Письма в ЖТФ – 2000. – №7. – С. 112-118.

16. Орлов, Л.К. Формирование структуры квантовых нитей InGaAs в матрице арсенида галлия [Текст] / Л.К. Орлов, Н.Л. Ивина. // Физика твёрдого тела – 2004. – №5. – С. 86-90.


Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.